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PREFACE

In spite of the existence of a number of excellent works

on geometrical optics, the need of a text-book which will serve

as an introduction to the theory of modern optical instru-

ments appears to be generally recognized; and the present

volume, which is the outgrowth of a course of lectures on

optics given in Columbia University, has been written in

the hope that it may answer this purpose. In a certain

sense it may be considered as an abridgment of my treatise

on The Principles and Methods of Geometrical Optics, but

the reader will also find here a considerable mass of more or

less new and original material which is not contained in the

larger book. I have endeavored, however, to keep steadily

in mind the limitations of the class of students for whom
the work is primarily intended and to employ, therefore,

only the simplest mathematical processes as far as possible.

With this object in view I have purposely entered into much
detail in the earlier and more elementary portions of the

subject, following in fact the method which has been found

to be most satisfactory with my own pupils; but I venture

to hope that the book may be not without interest also to

readers who already possess a certain knowledge of the

subject.

Recent years have witnessed extraordinary progress in

both ophthalmology and applied optics. Not many persons

are aware of the rapid rate at which spectacle optics, in par-

ticular, is developing into a severe scientific pursuit; and

there are certain portions of this volume which I think will

be helpful to the modern oculist and optometrist. Thus,

for example, I have been at some pains to explain the funda-

mental principles of ophthalmic lenses and prisms.

In general, however, I have necessarily had to omit much
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that is essential to a thorough knowledge of the theory of

optical instruments. In fact, in the space at my disposal

it has been found quite impossible to describe a single one

of these instruments in detail. In the latter portion of the

book the theory of the chromatic and spherical aberrations

is treated as briefly as possible; and I have given Von SeidePs

formulae for the five spherical aberrations in the case of a

system of infinitely thin lenses, chiefly because these formulae

are exceedingly useful in the preliminary design of an optical

system. But a complete discussion of these subjects would

lie far beyond the plan of this volume.

The problems appended to each chapter were originally

collected for the use of my pupils and are generally of a very

elementary description. A few of them have been adapted

from other text-books, but in such cases I have now lost sight

of their sources.

If perchance this book should help to stimulate the study

of optics in our colleges and universities, the author will feel

abundantly repaid. Unfortunately, at present geometrical

optics would seem to be a kind of Cinderella in the curric-

ulum of physics, regarded perhaps with a certain friendly

toleration as a mathematical discipline not without value,

but hardly permitted to take rank on equal terms with her

sister branches of physics. On the contrary, it might be in-

ferred that any system of knowledge which had already

placed at the disposal of scientific investigators such in-

comparable means of research as are provided by modern

optical instruments, and which has found so many useful

applications in the arts of both peace and war, would be de-

serving of the highest recognition and would be fostered and

encouraged in all possible ways. According to the maxim,

fas est et ab hoste doceri, the fact that from the time of Fraun-

hofer the Germans have not ceased to cultivate this field of

theoretical and applied science with notable achievements,

is certainly not without significance for us in this country

and in England. Indeed, both in England and in France,
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apparently due to the exigencies of war, schools of applied

optics have recently been organized.

Nearly all of the diagrams in this volume were drawn by
my friends, Professor Joseph Hudnut, Dr. B. A. Wooten and

Mr. J. G. Sparkes, to whom I am much indebted. I desire

also to express my grateful acknowledgments to my col-

league, Professor H. W. Farwell, for numerous valuable

criticisms from time to time and especially for aid in making

the photographic illustrations in Chapter II.

Any suggestions or corrections which may improve and

extend the usefulness of the book will be appreciated.

James P. C. Southall.

Columbia University,

New York, N. Y.,

April 4, 1918.
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CHAPTER I

LIGHTS AND SHADOWS

1. Luminous Bodies.—The external world is revealed to

the eye by means of light. With the rising sun night is

changed into day, and animals, vegetables and minerals in

all their manifold varieties of form and shade and color,

which were quite invisible in the dark, are now revealed to

view. Wherever the eye turns to gaze, there comes to it

from far or near a messenger of light conveying information

about the object which is under inspection. In an absolutely

dark room everything is invisible, because the eye can per-

ceive objects only when they radiate or reflect light into it.

In the strict sense a source of light is a self-luminous body

which shines by its own light, such as the sun or a fixed star

or a candle-flame; but frequently the term is applied to a

body which merely reflects or transmits light which has

fallen upon it from some other body, as, for example, the

moon and the planets which are illuminated by the light

from the sun. In this latter sense the blue sky and the

clouds, which, shining by light derived originally from the

sun, contribute the greater portion of what is meant by

daylight, are to be regarded as light-sources. A point-

source of light or a luminous point is in reality a small ele-

ment of luminous surface of relatively negligible dimensions

or else a body like a star at such a vast distance that it ap-

pears like a point.

2. Transparent and Opaque Bodies.—In general, when

light falls on a body, it is partly turned back or reflected at

or very near the surface of the body, partly absorbed within

1
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the body, and partly transmitted through it. An absolutely

black body which absorbs all the light that falls on it does

not exist; the best example we have is afforded by a body

whose surface is coated with lamp-black. The color of a

body as seen by reflected light is explained by the fact that

part of the incident light is absorbed, whereas only light

characteristic of the color in question is cast off or reflected

from the body. Thus, when sunlight falls on a piece of red

flannel, it is robbed of all its constituent colors except red,

and thus it happens that the color by which we describe

the body is in fact due to the light which it rejects. If the

piece of red flannel were illuminated by pure blue light, it

would appear black or invisible.

A substance such as air or water or glass, which is per-

vious to light, is said to be transparent. None of the light

that traverses a perfectly transparent body will be absorbed;

and, on the other hand, a perfectly opaque body is one which

suffers no light at all to be transmitted through it. No
substance is either absolutely transparent or absolutely

opaque. These terms, therefore, as applied to actual bodies

are merely relative, and so when we say that a body is opaque,

we mean only that the light transmitted through it is so

slight as to be practically inappreciable. Naturally, one

thinks of clear water as transparent and of metallic sub-

stances generally as opaque; but a sufficiently large mass

of water will be found to be impervious to light, whereas,

on the other hand, gold leaf transmits green light. A per-

fectly transparent body would be quite invisible by trans-

mitted light, although its presence could be detected by

observing the distortion in the appearance of bodies viewed

through it.

Again there are some substances which, while they are

not transparent in the ordinary sense, are far from being

opaque, such, for example, as ground glass, alabaster, por-

celain, milk, blood, smoke, which contain imbedded or sus-

pended in them fine particles of matter of a different optical
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quality from that of the surrounding mass. Light does

penetrate through materials of this nature in a more or less

irregular fashion, and accordingly they are described as

translucent. In the interior of such granular structures or

"cloudy media" light undergoes a so-called internal diffused

reflection or scattering; so that while it may be possible to

discern the presence of a body through an intervening mass

of such material, the form of the object will be to some ex-

tent indistinct and unrecognizable.

An optical medium is any space, whether filled or not

with ponderable matter, which is pervious to light. In geo-

metrical optics it is generally assumed that the media are

not only homogeneous and isotropic (meaning thereby that

the substance possesses the same properties in all directions),

as, for example, air, glass, water and vacuum, but perfectly

transparent as well.

3. Rectilinear Propagation of Light.—When an opaque

body is interposed between the observer's eye and a source

of light, it is well known that all parts of the latter which

lie on straight lines connecting the pupil of the eye with

points of the opaque obstacle will be hid from view. We
cannot see round a corner; we can look through a straight

tube but not through a crooked one. A child takes note of

such facts as these among the very earliest of his experiences

and recognizes without difficulty the truth of the common
saying that "light travels in straight lines," which in the

language of science is called the law of the rectilinear propa-

gation of light. The light that comes to us from a star

traverses the vast stretches of interstellar space in straight

fines until it reaches the earth's atmosphere, which is com-

posed of layers of air of increasing density from the upper

portions towards the surface of the earth; so that the me-

dium through which the light passes in this short remainder

of its downward journey is no longer isotropic, and, hence,

also this part of the light path will, in general, be no longer

straight but curved by a gradual and continuous bending
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from the less dense layers of air to the more dense layers

below. This explains why it is necessary for an observer

on the earth's surface looking through a long narrow tube

at a star not directly overhead to point the tube not at the

star itself but at its apparent place in the sky, which depends

on the direction which the light has when it enters the eye;

and, consequently, in accurate determinations of the posi-

tion of a heavenly body, the astronomer is always careful

to take account of the apparent displacement due to this

so-called " atmospheric refraction," and a principal reason

why astronomical observatories are nearly always located

on high mountains is to obviate as much as possible the

disturbing influence of the atmosphere. In aiming a rifle

or in any of the ordinary processes we call " sighting," which

are at the basis of some of the most delicate methods of

measurement known to us, we rely with absolute confidence

on this proved law of experience concerning the rectilinear

propagation of light; and, in fact, the most conclusive dem-

onstration that a line is straight consists in showing that it

is the path which light pursues. The notion of a "ray of

light" is derived from this law, and any line along which

light travels is to be regarded as

a ray of light. According to this

f^~^^^ ^^^"^ idea, therefore, the rays of light

X^-^ "^^^^ in an isotropic medium are

straight lines.

A very striking proof of the

Fig. 1.—Rectilinear Propagation rectilinear propagation of light

is afforded by placing a lumi-

nous object (Fig. 1) in front of an opaque screen in which

there is a very small round aperture. If now a second screen

or a white wall is placed parallel to the first screen on the

other side of it, there will be cast on it a so-called inverted

image of the object, the size of which will be proportional to

the distance between the two screens. From each point of

the luminous object rays go out in all directions, and a narrow
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cone of these rays will traverse the perforated screen through

the opening and illuminate a small area on the other screen,

and thus every part of the object will be depicted in this way
by little patches of light arranged in a figure which is similar

in form to the object, but which is completely inverted, since

not only top and bottom but right and left are reversed in

consequence of the rectilinear paths of the rays of light. It

may be remarked that this image is not an optical image in

the strict sense of the term (see § 11), but the phenomenon

can be explained only on the supposition that light proceeds

in straight lines. If another small opening were made in the

front screen very near the first hole, there would be two

images formed which would partly overlap each other, so that

the resultant image would be more or less blurred, and if we
have a single large aperture, we could no longer see any

distinct image at all.

The pinhole camera, invented by Giambattista Della
Porta (c. 1543-1615), and sometimes called Porta's camera,

is constructed on the principle of the experiment which has

just been described. It is very useful in making accurate

photographic copies of the architectural details of buildings,

because the image which is obtained is entirely free from

distortion.

In the pinhole camera there is a certain relation between

the size of the pinhole and the distance of the sensitive plate.

According to Abney, in order to get the best results with

an apparatus of this kind the diameter of the pinhole ought

to be directly proportional to the square-root of the distance

of the plate from the aperture, that is,

y = k\Zx,

where x and y denote the distance of the plate and the di-

ameter of the pinhole, respectively, and k denotes a con-

stant, the value of which will depend on the unit of length.

Thus, if x and y are measured in inches, A; = 0.008; in centi-

meters, k = 0.01275.
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4. Shadows, Eclipses, etc.—The forms of shadows are also

easily explained on the hypothesis that light proceeds in

straight lines, for the outline of the shadow cast by a body

is precisely similar to that of the object as viewed from the

place where the source of light is. Thus, for example, the

Fig. 2.—Shadow (umbra) of opaque globe E illuminated by
point-source S.

shadow of a sphere held in front of a point-source of light

has the form of a circle, and the shadow cast by a circular

disk will have the outline of an ellipse of greater and greater

eccentricity as the disk is turned more and more nearly

edge-on towards the light. Passing a shop-window on

Sunday when the shade is drawn down, if the sun is shining

Fig. 3.—Shadow (umbra and penumbra) of opaque globe E
illuminated by two point-sources Si, S2.

on the window, one can read the shadow of the sign painted

on the glass quite as distinctly as the sign itself. The in-

terposition of an opaque body between a source of light and

a wall not only darkens a portion of the wall or casts its

shadow there, but it converts an entire region of space be-

tween it and the wall into a dark tract either wholly or par-
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tially screened from the light. Thus, for example, the space

A (Fig. 2) behind the body E which is comprised within the

cone of rays proceeding from the point-source S that are

intercepted by E gets no light from S, and this wholly un-

illuminated region is called the umbra or true shadow. When
there are two luminous points Si and S2 (Figs. 3 and 4), the

region of shadow behind the opaque body E consists of the

Fig. 4.—Shadow (umbra and penumbra) of opaque globe E
illuminated by two point-sources Si, S2.

umbra A which is wholly screened from both sources of light

and the so-called penumbra or partially illuminated space

composed of a space Bi which gets light only from Si and

a similar space B2 which gets light only from S2. Points lying

beyond the penumbra will receive light from both sources.

If the light-source has an appreciable size, light will pro-

ceed from each of its shining points in all directions. Sup-

pose, for example, that an opaque globe E (Fig. 5) is placed

in front of a luminous globe S: then the dark body will

intercept all rays that fall within the cone which is tangent

externally to the two spheres, and, consequently, the por-

tion A of this cone which lies behind E will be completely
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screened from all points of the source S, so that this portion

constitutes the umbra where no light comes. In this case

also there are two penumbral regions Bi and B2 which are

partially illuminated, but the illumination is not uniform,

Fig. 5.—Shadow (umbra and penumbra) of opaque globe E
illuminated by luminous globe S.

but increases gradually from total darkness at the outer

borders of the umbra into the complete illumination of the

region outside the shadow. The shadow cast on a screen

by an opaque body exposed to an extended source of light

has no sharp outline but fades by imperceptible gradations

into the bright space outside. As to the umbra, it terminates

in a point at a certain distance x behind the opaque body,

provided the diameter of the latter is less than that of the

luminous globe in front of it, that is, provided R is greater

than r, where R, r denote the radii of luminous and opaque

globes, respectively. If the distance d between the centers

of the two globes is known, the length x of the umbra may
be calculated from the proportion

:

R d+x.
r x

whence we find

:

d
x =

r

Thus, for example, the diameter of the sun is 109.5 times

that of the earth, and the distance between the two bodies
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is 93 millions of miles. Accordingly, the umbra of the earth

is found to extend to a distance of more than 857 000 miles

behind it. Sometimes the moon whose distance from the

earth is about 240 000 miles enters inside the shadow, and

becomes then totally eclipsed. When the moon is only

partly inside the earth's umbra, there is a partial eclipse of

the moon. On the other hand, if the earth or any part of it

comes inside the moon's shadow, there will be an eclipse

of the sun visible from points on the earth that are in the

shadow.

The angular diameter of the sun is 32' 3.3"; whence it is

easy to calculate that the length of the umbra of an opaque

globe in sunlight is about 105 times the diameter of the globe.

On the other hand, if the light-source is smaller than the

interposed object, the umbra, instead of contracting to a

point, widens out indefinitely; and thus, whereas the shadow

cast on the opposite wall by a hand held in front of a broad

fire is smaller than the object, the shadow made by the same

hand in front of a small source of light like a candle-flame

may be prodigious in extent.

5. Wave Theory of Light.—The term "ray," as we have

employed it, is a purely geometrical conception, but in or-

dinary usage a ray of light implies generally an exceedingly

narrow beam of light such as is supposed to be obtained

when sunlight is admitted into a dark room through a pin-

hole opening in a shutter. But when the experiment is

carefully made to try to isolate a so-called ray of light in

this fashion, new and unexpected difficulties arise, and,

contrary to our preconceived notions, we are disconcerted

by finding that the smaller the opening in the shutter, the

more difficult it becomes to realize the geometrical concep-

tion which is conveyed by the word "ray." In fact, in con-

sequence of this experiment and others of a similar kind,

we begin to perceive that the statement of the law of the

rectilinear propagation of light needs to be modified; for

among other phenomena we discover that when light pro-
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ceeds through a very narrow aperture in a screen, it does

not pass through it just as though the screen were not pres-

ent, but it spreads out laterally from the point of perfora-

tion in all directions beyond the screen, proceeding, in fact,

very much as it might do if the opening in the screen were

the seat of a new and independent source of light.

The truth is, as has been ascertained now for a long time,

light is propagated not by "rays" at all but by waves; and

if, in general, it is found that light does proceed in straight

lines and does not bend around corners as sound-waves do,

the explanation is because the waves of light are excessively

short, considerably less than one ten-thousandth of a centi-

meter. Wave-lengths of light are usually specified in terms

of a unit called a "tenth-meter" or an "Angstrom unit,"

which is the hundred-millionth part of a centimeter (see

§ 162) ; that is, 1 Angstrom unit = 10 - 10
meter= 0.000 000 01

cm. The wave-length of the deepest red light is found to

be about 7667 of these units and the wave-length of light

corresponding to the extreme violet end of the spectrum

is a little more than half the above value or 3970 units.

According to the wave-theory the phenomena of light

are dependent on an hypothetical medium called the ether,

which may be compared to "an impalpable and all-per-

vading jelly" that not only fills empty space but penetrates

freely through all material substances, solid, liquid and

gaseous, and through which particles of ordinary matter

move easily without apparent resistance, for it is impon-

derable and exceedingly elastic and subtle, insomuch that

no one has ever succeeded in obtaining direct evidence of

its existence. It is this ether which is the vehicle by which

light-energy is transmitted and through which waves of

light are incessantly throbbing with prodigious but measur-

able velocity, which in vacuo is about 300 million meters per

second or about 186 000 miles per second.

6. Huygens's Construction of the Wave-Front.—The great

Dutch philosopher Huygens (1629-1695), who was a contem-
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porary of Newton's (1642-1727), and who is usually regarded

as the founder of the wave-theory of light, encountered his

greatest difficulty in trying to give a consistent and satis-

factory explanation of the apparent rectilinear propagation of

light. His mode of reasoning, as set forth in his " Treatise

on Light " published in 1690, while by no means free from

objection, leads to a simple geometrical construction of the

wave-front which corresponds with the known facts in regard

to the procedure of light.

Let O (Fig. 6) designate the position of a point-source of

light from which as center or origin ether waves proceed in

an isotropic medium with

equal speeds in all direc-

tions. At the end of a

certain time the disturb-

ances will have arrived

at all the points which

lie on a spherical surface

Ci described around O as

center, and at the instant

in question this surface

will be the locus of all the

particles in the medium
that are in this initial

phase of excitation, and Fig. 6

so it represents the wave-

front at this moment. Now according to Huygens, every

point in the wave-front becomes immediately a new source

or center from which so-called secondary waves or wave-

lets spread out. These innumerable' ripples or wavelets

starting together from all the points affected by the

principal wave overlap and interfere with each other,

and Huygens inferred that their resultant sensible effects

are produced only at the points of the surface which at any

given instant touches or, as we say, envelops all the secondary

wave-fronts, and that accordingly the new principal wave-

H.uygens's construction of wave-
front.
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front will be this enveloping surface; so that the effect is

the same as though the old wave-front
#
had expanded into

the new, the disturbance marching forward along a straight

line in any given direction. Obviously, in an unobstructed

isotropic medium, such

as is here supposed,

the enveloping surface

or new wave-front will

be a sphere concentric

with the old wave-

front, and the straight

lines that radiate out

from the center will be

the paths of the dis-

turbance.

Now if a plane screen

MN (Fig. 7) is inter-

posed in front of the

advancing waves, and

if there is an opening

Fig. 7.

—

Huygens's construction of spherical AB in the Screen, each

Tcrlen.

PaSSing thr°Ugh ^^ * &
Point in the opening

between A, which is

nearest to the source O, and B, which is farthest from it,

will become in turn a new center of disturbance whence

secondary spherical waves will be propagated into the re-

gion on the other side of the screen. Since the disturbance

will have arrived at the point A before it has reached a point

X between A and B, the secondary wave emanating from

A will at the end of a given time t have been travelling for

a longer time than the secondary wave coming from X. If

the radius of the wavelet around X at the time t is denoted

by r, and if the distance OX is put equal to x, then d = x-\-r

will denote the distance from O which the disturbance will

have gone at the end of the time t; and since this distance

is constant, whereas the distances denoted by x and r are
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variables depending on the position of the point X, it is

evident that the farther X is from 0, that is, the greater

the value of x, the smaller will be the radius r = d — re of

the secondary wavelet around X. The enveloping surface in

this case is seen to be that part of the spherical surface de-

scribed around O as center with radius equal to d which is in-

tercepted by the cone

which has O for its vertex

and the opening AB in

the screen for a section.

Within this cone, accord-

ing to Huygens's view,

the disturbance is propa-

gated exactly as though

the perforated screen had

not been interposed,

whereas points on the far

side of the screen and

outside this limiting cone

are not affected at all.

It is plain that this mode of explanation is equivalent to

the hypothesis of the rectilinear propagation of light.

If the luminous point O (Fig. 8) is so far away that the

dimensions of the opening AB in the screen may be regarded

as vanishingly small in comparison with the distance of the

source, the straight lines drawn from to the points A, X, B
in the opening in the screen may be regarded as parallel,

and the wave-front in this case will be plane instead of

spherical, that is, the wave-front is a spherical surface with

an exceedingly great radius as compared with the dimen-

sions of the aperture in the screen.

7. Rays of Light are Normal to the Wave-Surface.—The
most obvious objection to Huygen's construction is, What
right has he to assume that the places of sensible effects are

the points on the surface which is tangent to or envelops

the secondary waves? And why is the light not propagated

Fig. 8.

—

Huygens's construction of plane
waves passing through opening in a
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backwards from these new centers as well as forwards?

Moreover, when the opening in the screen is very narrow,

it is found, as has been already stated (§ 5), that this con-

struction does not correspond at all with the observed facts.

It is entirely beyond the scope of this book to attempt to

answer these questions here or to describe even briefly the

remarkable and complex phenomena of diffraction (which

is the name given to these effects due to the bending of the

light-waves around the edges of opaque obstacles). For
an adequate discussion of these matters the reader must
consult a more advanced treatise on physical optics. Suffice

it to say, that the wave-theory of light and especially the

principle of interference as developed long after Huygens's
death (1695) by Young (1773-1829) and Fresnel (1788-

1827) entirely supports the idea of the rectilinear propaga-

tion of light as commonly understood; notwithstanding

the fact that this law, as indeed is the case with nearly all

so-called natural laws, has to be accepted with certain reser-

vations; but, fortunately, these latter do not concern us at

present.

Accordingly, a luminous point is said to emit light in all

directions, and the so-called light-rays in an isotropic medium
are straight lines radiating from the center of the spheri-

cal wave-surface. These rays may subsequently be bent

abruptly into new directions in traversing the boundary

between one isotropic medium and another, and under such

circumstances the wave-surfaces may cease to be spherical;

but no matter what may be the form of the wave-surface,

the direction of the ray at any point is to be considered always as

normal to the wave-front that passes through that point (see § 39)

.

In an isotropic medium the waves always march at right

angles to their own front, and the so-called rays of light in

geometrical optics are, in fact, the shortest optical routes

along which the disturbances in the ether are propagated

from place to place. With the aid of the principle of inter-

ference (alluded to above) and by the use of the higher
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mathematics, it may indeed be shown that the effect pro-

duced at any point P in the path of a ray of light is due

almost exclusively to previous disturbances which have

occurred successively at all the points along the ray which

lie between the source and the point P in question, and that

disturbances at other points not lying on the ray which goes

through P are practically without influence at P, that is, their

effects there are mutually counteracted. And thus we arrive

also at the so-called principle of the mutual independence of

rays of light, which is also one of the fundamental laws of

geometrical optics. From this point of view a ray of light

is to be regarded as something more than a mere geomet-

rical fiction and as having in some real sense a certain physi-

cal existence, although it is not possible to isolate the ray

from its companions.

8. The Direction and Location of a Luminous Point.—
When a ray of light comes into the eye, the natural infer-

ence as to its origin is that the source lies in the direction from

which the ray proceeded. There is no difficulty in pointing out

correctly the direction of an object which is viewed through

an isotropic medium; but if the medium were not isotropic,

the apparent direction of A

the object might not be,

and probably would not

be, its real direction.

Thus, owing to the ef-

fects of atmospheric re-

fraction, to Which allu-
FlG

-
9-Direction and location of a lumi-

' nous point.

sion has been made al-

ready (§ 3), the sun is seen above the horizon before it has

actually risen, and so also in the evening the sun is still

visible for a few moments after sunset. For the same reason

a star appears to be nearer the zenith than it really is.

In general, however, when a ray SA (Fig. 9) enters the

eye at A, it is correctly inferred that the source S lies some-

where on the straight line AS, but whether it is actually
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situated at S or farther or nearer cannot be determined by-

means of a single ray. If the eye is transferred from A to

another point B, the source will appear now to lie in the new
direction BS. If the spectator views the source with both

eyes simultaneously, one eye atA and the other at B, or if using

only one eye he moves it quickly from A to B, the position

of the source at S will be located at the point of intersection

of the straight lines AS and BS; and this determination will

be more accurate in proportion as the distance between the

two points of observation A and B is greater or the more

nearly the acute angle ASB approaches a right angle. That

is the reason why in estimating the distance of a remote

object one tries to observe it from two stations as widely

separated as possible, and that explains also why a person

shifts his head from side to side. If the object is compara-

tively near at hand, a single movement of the head may be

sufficient in order to get a fairly good idea of its distance,

or it may be that it is simply necessary to look at the object

with both eyes at the same time. It is amusing to watch

a person with one eye closed attempting to poke a pencil

through a finger-ring suspended in the middle of a room on a

level with his eye; by chance he may succeed after repeated

failures, whereas with both eyes open, the operation is per-

formed without the slightest difficulty.

In case the rays come into the eye after having traversed

two or more isotropic media, it is easy to be deceived about

the direction of the source where they emanated. In order

for a bullet to hit a fish under water, the rifle must be

pointed in a direction below that in which the fish appears

to be. At the boundary-surface between two isotropic media

the direction of a ray of light is usually changed abruptly

by refraction (§ 26) ; so that, in general, the path of a ray

will be found to consist of a series of line-segments. In

Fig. 10 the broken line ABCD represents the course taken

by a ray of light in proceeding through several media such as

water, air and glass. The line-segments AB, BC and CD
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are portions of different straight lines of indefinite extent.

For example, the actual route of the ray in air is along the

straight line between B and C, and if the point P lies on

this line between B and

C, we say that the ray

BC passes " really"

through P, whereas we
say that this same ray

passes "virtually "

through a point Q or R
which lies in the prolon- Fig. 10.—Points P, Q and R considered as

gation of the line-segment !
y

!
ng on ray BC *? to be

;
egarded *»

°
.

°
. lying in same medium as BC.

BC in either direction.

Moreover, thinking of the point Q or R as a point lying on

the straight line BC which the light pursues in traversing

the medium between the water and the glass, we must re-

gard such a point as being optically in the same medium
as the ray to which it belongs. Thus, the points Q and R
in the figure considered as points on the ray BC are to be

regarded as being optically in air, although in a physical

sense Q is a point in the water and R is a point in the glass

(see § 104).

Now let us suppose that two rays emanating originally

from a point-source S
(Figs. 11 and 12) are

bent at A and B into

new directions AP and

BQ, respectively, so as

to enter the two eyes of

an observer at P and Q.

In such a case the ob-

Fig. 11.—S' is said to be a "real'

image of point-source at S.

server will infer that the rays originated at the point S'

where the straight lines AP and BQ intersect. This point

S', which is called the image of S, may lie in the actual paths

of the rays AP and BQ that enter the eyes, so that the light

from S really does go through S', and in this case (Fig. 11)
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the image S' is said to be a real image. On the other hand,

if the straight lines AP and BQ have to be produced back-

wards in order to find their point of intersection, the rays

do not actually pass through S', and in this case the image

is said to be a virtual

•^x-- image of the point S

(Fig. 12). However, it

must be borne in mind

in connection with these

diagrams that in reality

Fig. 12.—S' is said to be a "virtual" image we do not See objects by
of point-source at S. r • ip means of single rays;

and, hence, we shall not be in a position to form an ac-

curate idea of the term optical image until we come to

consider bundles of rays in § 11.

9. Field of View.—The open or visible space commanded

by the eye is called the field of view. Since the eye can turn

in its socket, the field of view of the mobile eye is very much
more extensive than that of the stationary eye, and, more-

over, the field of view of both eyes is greater than that of

one eye by itself. The spectator may also widen his field

of vision by turning his head or indeed by turning his entire

body. For the present, however, we shall employ the term

field of view to mean that more limited portion of space

which is accessible to the single eye turning in its socket

around the so-called center of rotation of the eye. When
a person gazes through a window, the outside field of view

is limited partly by the size of the window and partly also

by the position of the eye with reference to it; so that only

such exterior objects will be visible as happen to lie within

the conical region of space determined by drawing straight

lines from the center of rotation of the eye to all the points

in the edge of the window. Thus, for example, if the open-

ing in the window is indicated by the gap GH in the straight

line GH in Fig. 13, and if the point marked is the position

of the center of rotation of the eye, a luminous object at P



§9] Field of View 19

in front of the window and directly opposite the eye will

be plainly in view, because some of the rays from P may go

through the window and enter the eye. But if the object

is displaced far enough to one side to some position such as

Fig. 13.—Field of view determined by contour of

window GH and position of the eye at O.

that marked R in the diagram, so that the straight line OR
does not pass through the window, the object will pass out

of the field of view. The straight line MN drawn parallel

to GH is supposed to represent a vertical wall opposite the

window. If this wall is covered with a mural painting, the

only part of the picture that can be seen through the win-

dow by the eye at O is the section included between the

points T and V where the straight lines OG and OH intersect

the straight line MN. The window acts here as a so-called

field-stop (§ 137) to limit the extent of the field of view. But
the limitation of the visible region depends essentially also

on the position of the eye, becoming more and more con-

tracted the farther the eye is from the window. The size of

the window makes very little difference when the eye is

placed close to it, and a person sitting near an open window

can command almost as wide a view as if the entire wall of

the room were removed. If one is looking through a key-

hole in a door, he must put his eye close to the hole in order

to see objects that are not directly in front of it.
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10. Apparent Size.—The apparent size of an object is

measured by the visual angle which it subtends at the eye.

Several objects in the field of view which subtend equal

angles when viewed from the same standpoint are said to

have the same apparent size; although their actual sizes will

Fig. 14.—Apparent size measured by visual angle.

be different if they are at unequal distances from the eye.

The objects marked 1, 2 and 3 in Fig. 14 appear to an eye

at to be all of the same size. Thus an elephant may ap-

pear no bigger than a man or a boy. Looking through a

single pane of glass in a window, one may see a large build-

ing or an entire tree, because the apparent extent of the

small area of glass is greater than that of the distant object.

A fly crawling across the window may hide from view a

large portion of the distant landscape outside. A mountain

a few miles off may be viewed through a finger-ring.

The apparent size of an object, being measured by the

visual angle which it subtends, is expressed in degrees or

radians. The apparent diameter of the full moon in the sky,

for example, is not quite half a degree, so that by holding

a coin a little less than 9 mm. in diameter at a distance of

one meter from the eye, the entire moon could be hid from

view. In fact, instead of the angle itself it is customary to

employ the tangent of the angle, especially in case the vis-

ual angle is not large. Thus, the apparent size of an object

of height h at a distance d from the eye (in Fig. 15 AB =
h, AO = d) is measured by the tangent of the angle BOA,

that is,
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A . linear dimension of the object h
Apparent size= ^r— ^ —, — = -•

distance from the eye a

Accordingly, in order to determine the actual size (h) of

the object, it is necessary to know its distance (d) as well

as its apparent size, because the actual size is equal to the

product of these two magnitudes. The apparent size of an

Fig. 15.—Apparent size varies inverse^ as distance d and directly as actual

size h.

object at a distance of one foot is an hundred times greater

than it is at a distance of an hundred feet, or, as we say, the

appare?it size varies inversely as the distance. As the object

recedes farther and farther from the eye, its apparent size

diminishes until at last it looks like a mere speck and the

details in it have all disappeared. On the other hand, al-

though the object is quite close to the eye, its actual dimen-

sions may be so minute that it is not to be distinguished from

a point. There is, indeed, a limit to the power of the human
eye to see very small objects, which is reached when the

object subtends in the field of view an angle that does not

exceed one minute of arc. Two stars whose angular dis-

tance apart is less than this limiting value cannot be seen

as separate and distinct by a normal eye without the aid

of a telescope. Now tan l' = sTz-g, and consequently the

eye cannot distinguish details of form in an object which

is viewed at a distance 3438 times as great as its greatest
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linear dimension. A silver quarter of a dollar is about

24 mm. in diameter and viewed from a distance of 82.5

meters (3438 times 24 mm. = 82 512 mm. = 82.5 m.) its ap-

parent size will be 1' of arc and it will appear therefore

like a mere point. The apparent width of a long straight

street diminishes in proportion as the distance increases;

until, finally, if the street is long enough, the two opposite

sidewalks seem to run together at the so-called "vanishing

point." .

If rays of light coming through a window and entering

the eye could leave marks in the glass at the points where

they cross it, and if these marks could be made to emit the

same kind of light as was sent out from the corresponding

points of the object, there would be formed on the glass

a pictorial representation of the object which when held

before the eye at the proper distance would have almost

exactly the same appearance as the object itself. This

principle of perspective is made use of in the art of painting,

and the artist, with his lights and shades and colors, tries

to portray on a plane canvas a scene which will produce

as nearly as possible the same visual impression on a spec-

tator as would be produced by the natural objects them-

selves. So far as apparent size is concerned, such a repre-

sentation may be perfect. In a good drawing the various

figures are delineated in such dimensions that when viewed

from the proper standpoint they have the same apparent

sizes as the realities would have if seen under the aspect

represented in the picture. No one looking at a photo-

graph of a Greek temple will notice (unless his attention

is specially directed to it) that the more distant pillars are

much shorter in the picture than the nearer ones. Indeed,

generally we pay little heed to the apparent sizes of things,

but always try to conceive their real dimensions. When
two persons meet and shake hands, neither is apt to observe

that the other appears much taller than he did when they

were fifty yards apart.
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11. The Effective Rays.—All the rays that enter the eye

and fall on the retina must pass through the circular window

in the iris or colored diaphragm of the eye which is called

the pupil of the eye and which is sometimes spoken of as

the "black of the eye/' because it appears black against

the dark background of the posterior chamber of the eye.

The pupil of the eye is about half a centimeter in diameter,

although within certain limits its size can be altered to regu-

late the quantity of light which is admitted to the eye. So

far as the spectator's vision is concerned, it is only these

rays that go through the pupil of his eye that are of any

use, and these are the effective rays. When the pupil dilates,

more rays can enter, and consequently the source appears

brighter. The brightness of the source will depend also on

its distance, because for a given diameter of the pupil, the

aperture of the cone of rays from a nearer source will be

wider than that of the cone of rays from a more distant

source. In general, therefore, the pupil of the eye regu-

lates the angular apertures of the cones of rays that enter

the eye from each point of a luminous object and acts as

the so-called aperture-stop (§ 134). Thus, while the extent

of the field of view is controlled by the field-stop (§ 9), the

brightness of the source depends essentially on the size of

the aperture-stop.

A series of transparent isotropic media each separated

from the next by a smooth, polished surface constitutes an

optical system. An optical instrument may consist of a single

mirror, prisms or lens, but generally it is composed of a com-

bination of such elements, which may be in contact with

each other or separated by air or some other medium. In

the great majority of actual constructions the instrument

is symmetrical with respect to a straight line called the

optical axis. Not all the rays emitted by a luminous object

will be utilized by the instrument; generally, in fact, only

a comparatively small portion of such rays will be trans-

mitted through it, in the first place because its lateral di-
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mensions are limited, and in the second place because, in

addition to the lens-fastenings and other opaque obstacles

(sides of the tube, etc.), nearly all optical instruments are

provided with perforated screens or diaphragms called

" stops," specially placed and designed to intercept such rays

as for one reason or another it is not desirable to let pass

(§133). The planes of these stops are placed at right angles

to the optical axis with the centers of the openings on the

axis. Accordingly, each separate point of the object is to

be regarded as the vertex of a limited cone or bundle of rays,

which, with respect to the instrument, are the so-called

effective rays, because they are the only rays coming from

the point in question that traverse the instrument from

one end to the other without being intercepted on the way.

Moreover, in every bundle of rays there is always a cer-

tain central or representative ray, coinciding perhaps with

the axis of the cone or distinguished in some special way,

called the chief ray of the bundle (§ 139). In a symmetri-

cal optical instrument the chief ray of a bundle of effective

rays is generally defined to be that ray which in traversing

a certain one of the series of media crosses the optical axis

at a prescribed point, which is usually at the center of that

one of the stops which is the most effective in intercepting

the rays and which, therefore, is called the aperture-stop,

as will be explained more fully hereafter (see Chapter XII).

According to this definition, the chief rays coming from all

the various points of the object constitute a bundle of rays

which in the medium where the aperture-stop is placed

(sometimes called the "stop medium") all pass through

the center of the stop.

We shall employ the term pencil of rays to mean a section

of a ray-bundle made by a plane containing the chief ray.

The effective rays in the first medium before entering

the instrument are called the incident rays or object rays;

and these same rays in the last medium on issuing from the

instrument are called the emergent rays or image rays. If we
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select at random any point X lying on one of the rays of

the bundle of emergent rays which had its origin at the lu-

minous object-point P, in general, no other ray of this bundle

will pass through X, since in a given optical system there

will usually be one single route by which light starting from

the point P and traversing the instrument can arrive finally,

either really or virtually (§ 8), at a selected point X in the

last medium. However, there may be found a number of

singular points where two or more rays of the bundle of

emergent rays intersect; and under certain favorable and

exceptional circumstances it may indeed happen that there

is one special point P' where all the emergent rays emanating

originally from the object-point P meet again; and then we
shall obtain at P' a perfect or ideal image of P, which is

described by saying that P' is the image-point conjugate to

the object-point at P. This image will be real or virtual

according as the actual paths of the image-rays go

through P' or merely the backward prolongations of these

paths (§ 8).

In order to obtain an image in this ideal sense, the optical

system must be such as to transform a train of incident

spherical waves spreading out from the object-point P into

a train of emergent spherical waves converging to or di-

verging from a common center P' in the image-space. When
all the rays of a bundle meet in one point, the bundle of rays

is said to be homocentric or monocentvic. In general, how-

ever, a monocentric bundle of rays in the object-space will

be transformed in the image-space into an astigmatic bundle

of emergent rays, which no longer meet all in one point;

and in fact this is a usual characteristic of a bundle of op-

tical rays.

PROBLEMS

1. Why are the shadows much sharper in the case of an

arc lamp without a surrounding globe than with one?

2. Draw a diagram to show how a total eclipse of the
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moon occurs; and another diagram to illustrate a total

eclipse of the sun. Give clear descriptions of the

drawings.

3. An opaque globe, 1 foot in diameter, with its center

at a point C, is interposed between an arc lamp S and

a white wall which is perpendicular to the straight line

SC. If the wall is 12 feet from the lamp, and if the

distance SC = 3 feet, what is the area of the shadow on

the wall? Ans. 12.57 sq. ft.

4. What is the apparent angular elevation of the sun

when a telegraph pole 15 feet high casts a shadow 20 feet

long on a horizontal pavement? Ans. 36° 52' 10".

5. What is the height of a tower which casts a shadow

160 feet long when a vertical rod 3 feet high casts a shadow

4 feet long? Ans. 120 feet.

6. An object 6 inches high is placed in front of a pinhole

camera at a distance of 6 feet from the aperture. What is

the size of the inverted image on the ground glass screen if

the length of the camera-box is 1 foot? Ans. 1 inch.

7. A small hole is made in the shutter of a dark room, and

a screen is placed at a distance of 8 feet from the shutter.

The image on the screen of a tree outside 120 feet away is

measured and found to be 3 feet long. How high is the tree?

Ans. 45 feet.

8. If the sensitive plate of a pinhole camera is 20 cm.

from the pinhole, what should be the diameter of the pin-

hole, according to Abney's formula? Ans. 0.57 mm.
9. What is the apparent size of a man 6 feet tall at a dis-

tance of 100 yards? How far away must he be not to be

distinguishable from a point? Ans. 1° 8' 45"; 3.9 miles.

10. If the moon is 240 000 miles from the earth and its

apparent diameter is 31' 3", what is its actual diameter?

Ans. 2168 miles.

11. A person holding a tube 6 inches long and 1 inch in

diameter in front of his eye and looking through it at a

tree moves backwards away from the tree until the entire
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tree is just visible. What is the apparent height of the

tree? Ans. 9° 27' 44".

12. Assuming that the resolving power of the eye is one

minute of arc, at what distance can a black circle 6 inches

in diameter be seen on a white background? Ans. 1719 feet.



CHAPTER II

REFLECTION OF LIGHT. PLANE MIRRORS

12. Regular and Diffuse Reflection.—When a beam of

sunlight, admitted through an opening in a shutter in a

dark room, falls on a piece of smoothly polished glass, al-

though the glass itself may be almost or wholly invisible, a

brilliant patch of light will be reflected from the glass on the

walls of the room or the ceiling or on some other adjacent ob-

ject. If a person in the room happens to be looking towards

the piece of glass along one special direction, he will be al-

most blinded by the light that is reflected into his eyes. The
glass acts like a mirror and reflects the sunlight falling on

it in a definite direction which depends only on the direc-

tion of the incident rays and on the orientation of the re-

flecting surface, and in such a case the light is said to be

regularly reflected. Thus, for example, signals may be com-

municated to distant and inaccessible stations by reflecting

thither the rays of the sun by a plane mirror adjusted in a

suitable position.

If the surface is not smooth, the light will be reflected in

many directions at the same time. The long sparkling trail

of sunlight seen on the surface of a lake or a river on a bright

day is caused by the reflections of the sun's rays into the

eyes of the spectator from countless little ripples on the

surface of the water.

The bright spot of light on the wall of a dark room at

the place where a beam of sunlight falls, which shines almost

as though this portion of the wall were itself a self-luminous

body, is visible from any part of the room by means of the

light which is reflected from it; and although the incident

rays have a perfectly definite direction, the reflected light

28
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is scattered in all directions. Some of this reflected light

will fall on other bodies in the room, which will be more or

less feebly illuminated thereby and rendered dimly visible

by the light which they reflect in their turn; until at last

the light after undergoing in this way repeated reflections

from one body to another becomes too faint to be percep-

tible. Light which is reflected or scattered in this way is

said to be diffusely reflected or irregularly reflected, although,

strictly speaking, there is nothing irregular about it. Ordi-

narily it is in this way that bodies illuminated by day-

light or by artificial light are rendered visible to a whole

group of spectators at the same time.

The paper on the walls of an apartment which gets very

little light through the windows should be a dull white in

order to scatter and diffuse as much as possible the light

that comes into the room. The walls of a dark chamber

used for developing photographic plates should be painted

a dull black in order to absorb the light that falls on them.

An absolutely black body (§ 2) exposed to the direct rays

of the sun will be completely invisible, except by contrast

with its surroundings. If the walls of a dark room and all

the objects within it were coated with lampblack, and if

the air inside were entirely free from dust and moisture,

a beam of sunlight traversing the room could not be seen

and the only way to detect its presence would be by placing

the eye squarely in its path. But if a little finely divided

powder were scattered in the air or if a cloud of smoke were

blown across the beam of light, the course of the rays would

immediately become manifest to a spectator in any part of

the room, because some of the light reflected from the float-

ing particles of matter in practically every direction would

enter the eye. But the light itself is quite invisible.

Any surface that is not too rough, that is, whose scratches

or ridges are not wider than about a quarter of a wave-

length of light, will reflect light in a greater or less degree

depending on the smoothness of the surface. Waves of
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light falling on a sheet of white paper are broken up or

scattered in all directions, and we can get some idea of the

quantity of light that is diffusely reflected from such a sur-

face by letting the light of a lamp shine on the paper when

it is held near an object that is in shadow. It is almost

startling to see how under the influence of this indirect

illumination the details of the obscure body suddenly ap-

pear as if summoned forth by magic. A highly polished

metallic surface makes the best mirror, reflecting some-

times as much as three-fourths of the incident light. Our

ordinary looking-glasses are really metallic mirrors, because

they are coated at the back with silver, and the glass merely

serves as a protection for the reflecting surface.

13. Law of Reflection.—A ray of light represented in

Fig. 16 by the straight line AB is incident at B on a smooth

reflecting surface whose trace in the plane of the diagram

is the line ZZ. The straight line BN normal to the surface

Fig. 16.—Law of reflection:

Z NBA = -Z NBC =Z CBN.

at B is called the incidence-normal, and the plane ABN which

contains the incident ray AB and the normal BN is called

the plane of incidence, which corresponds here with the

plane of the diagram. The angle of incidence is the angle

between the incident ray and the incidence-normal; or, to
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define this angle more exactly, the angle of incidence is the acute

angle ( a ) through which the incidence-normal has to be turned

about the point of incidence in order to make it coincide with

the incident ray; thus, a ~ Z NBA. Counter-clockwise rota-

tion is to be reckoned as positive and clockwise rotation as

negative. This rule will be consistently observed in the

case of all angular measurements.

The reflected ray corresponding to the incident ray AB is

represented by the straight line BC; and if in the above

definition of the angle of incidence we substitute "reflected

ray" for " incident ray," we shall obtain the definition of

the angle of reflection (/3); that is, /3= ZNBC. The sense

of the rotation is indicated by the order in which the

letters specifying the angle are named; thus, ZABC is the

angle described by rotating the straight line AB around the

point B until it coincides with the straight line BC; whereas

ZCBA=-ZABC denotes the equal but opposite rotation

from CB to BA. The student should take note of this

usage, which will be uniformly employed throughout this

book.

The law of the reflection of light, which has been known
for more than 2200 years, is contained in the following

statement

:

The inflected ray lies in the plane of incidence, and the in-

cident and reflected rays make equal angles with the normal

on opposite sides of it; that is, /S =-a.
A very accurate experimental proof of this law may be

obtained by employing a meridian circle to observe the light

reflected from an artificial mercury-horizon, that is, from

the horizontal surface of mercury contained in a basin. In

fact, this is the actual method used by astronomers in meas-

uring the altitude of a star. The telescope is pointed at the

star and then at the image of the star in the mercury mirror,

and it will be found that the axis of the telescope in these

two observations will be equally inclined to the vertical on

opposite sides of it.
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A simple lecture-table apparatus for verifying the law

of reflection of light consists of a circular disk (Fig. 17) made

of ground glass, about one foot or more in diameter, and

graduated around the circumference in degrees. This disk

is mounted so as to be capable of rotation in a vertical plane

about a horizontal axis

perpendicular to this
plane and passing through

the center of the disk. A
small piece of a plane

mirror B with its plane

perpendicular to that of

the disk is fastened to

the disk at its center, and

the mirror is adjusted so

that it is perpendicular

to the radius BN drawn

Fig. 17.—Optical disk used to verify law on the disk. A beam of
of reflection.

sunlight falling on the

mirror in the direction NB will be reflected back from the

mirror in the opposite direction BN, so that in this adjust-

ment of the disk the paths of the incident and reflected rays

coincide (/?= -a=0). Now if the disk is turned so that

the incident ray AB makes with the normal BN an angle

NBA, the reflected ray will proceed in a direction BC such

that ZNBC = ZABN=-a.
If, without changing the direction of the incident ray, the

disk is turned through an angle 6, the plane of the mirror to-

gether with the incidence-normal will likewise be turned

through this same angle, and the angles of incidence and re-

flection will each be changed in opposite senses by the amount

6, so that the angle between the incident and reflected rays

will be changed by 2 6. Accordingly, when a plane mirror

is turned through a certain angle, the reflected ray will be turned

through an angle twice as great.
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14. Huygens's Construction of the Wave-Front in Case

of Reflection at a Plane Mirror.

1. The case of a plane wave reflected from a plane mirror.

The rebound of waves from a polished surface affords a very

simple and instructive

illustration of Huygens's

Principle (§ 5) . In Fig. 18

the straight line AD
represents the trace in

the plane of the diagram

of a plane mirror, and

the straight line AB rep-

resents the trace of a

portion of the front of

an incident plane wave

(§ 6) advancing in the

direction of the wave-

normal BD. At the first

instant under considera-

tion the wave-front is

supposed to be in the

position AB when the

disturbance has just

reached the point A of

the reflecting surface,

and from this time for-

ward, according to Huy-
gens's theory, the point

A is to be regarded as

itself a center of dis-

turbance from which

secondary hemispherical

waves are reflected back into the medium in front of the

mirror. Exactly the same state of things will prevail at

this instant (t= 0) at all points of the plane reflecting sur-

face lying on a portion of the straight line perpendicular

Fig. 18.

—

Huygens's construction of plane

wave reflected at plane mirror.
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to the plane of the paper at the point A, and the envelop

of the hemispherical wavelets originating from these points

will be a semicylindrical surface whose axis is the straight

line just mentioned. If the speed with which the waves

travel is denoted by v, then at the end of the time t= YQ/v

the disturbance that was initially at the point P in the wave-

front AB will have advanced to a point Q on the reflecting

plane between A and D; and from this moment a new set

of hemispherical wavelets having their centers all on a

straight line perpendicular to the plane of the diagram at

the point Q will begin to develop, and their envelop will

also be a semicylinder. And so at successively later and

later instants the disturbance will arrive in turn at each

point along AD; until, finally, after the time t= BT)/v the

farthermost point D will be reached. Meanwhile, around

all the straight lines perpendicular to the plane of the

paper at points lying along AD semicylindrical elementary

wave-surfaces will have been spreading out from the re-

flecting surface, the radii of these cylinders diminishing

from A towards D. At the time when the disturbance

reaches D, the semicylindrical wavelet whose axis passes

through A will have expanded until its radius is equal to

BD, and at this same instant the semicylindrical wavelet

corresponding to a point Q between A and D will have been

expanding for a time (BD—PQ)/v, and hence its radius will

be egual to (BD—PQ) = (BD—BK) =KD.
Now, according to Huygens's Principle, the surface which

at any instant is tangent to all these elementary semi-

cylindrical waves will be the required reflected wave-front

at that instant. We shall show that the reflected wave-front

is a plane surface which at the moment when the disturb-

ance reaches the point D contains this point; or, what

amounts to the same thing, we shall show that if a straight

line DC in the plane of the diagram is tangent at C to the

semicircle in which this plane cuts the semicylinder whose

axis passes through A, it will be a common tangent to all
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such semicircles; for example, it will also be tangent to

the semicircle in which the plane of the diagram cuts the

semicylinder belonging to the point Q. From D draw DC
tangent at C to the semicircle described around A as center

with radius AC =BD and DR tangent at R to the semi-

circle described around Q as center with radius QR= KD.
The right triangles ABD and ACD are congruent, and hence

ZDAB = ZCDA; and, similarly, in the congruent right tri-

angles QKD and QRD ZDQK= ZRDQ. But ZDQK=
ZDAB, and therefore ZRDQ=ZCDA, and hence the two

tangents DR and DC coincide. Accordingly, the trace of

the reflected wave-front in the plane of the diagram is the

straight line CD. This reflected plane wave will be prop-

agated onwards, parallel with itself, in the direction shown

by the reflected rays AC, QR, etc. It is evident from the

construction that the ray incident at A, the normal AN to

the reflecting surface at the incidence-point A, and the re-

flected ray AC lie all in the same plane; and the equality of

the angles of incidence and reflection is an immediate con-

sequence of the congruence of the triangles ABD and ACD.
2. The case of a spherical wave reflected at a plane mirror.

In Fig. 19 the light is represented as originating from a

point-source L and spreading out from it in the form of

spherical waves which presently impinge on the plane re-

flecting surface represented in the diagram by the straight

line AD. The nearest point of the reflecting plane to the

source at L is the foot A of the perpendicular let fall from

L on the straight line AD, and this, therefore, is the first

point of the mirror to be affected. Obviously, on account

of symmetry with respect to LA, it will be quite sufficient

to investigate the procedure of the waves in the plane of

the figure. The wave-front at the time the disturbance

reaches A will be represented by the arc of a circle described

around L as center with radius equal to LA; let P desig-

nate the position of a point on this arc, and draw the straight

line LP meeting AD at Q. After a time t= FQ/v the dis-
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turbance will have advanced from P to Q, and from this

moment the point Q will begin to send back wavelets from

the reflecting surface. And so in succession one point of

the mirror after another will be affected until presently the

disturbance reaches the farthest point D. Meanwhile, all

the points along AD on

one side of AL and

along AF on the other

side (AF = DA) will

have been sending out

wavelets whose radii will

be greater and greater

the nearer these new
centers are to the point

A midway between D
and F. Draw the
straight line LD meet-

ing the arc AP in the

point B: then at the

moment t= BT>/v when
the disturbance from L
has just arrived at D,

the reflected wavelet

Fig. 19.

—

Huygens's construction of spheri- proceeding from A as
cal wave reflected at plane mirror. < hi u

center will have ex-

panded until its radius is equal to BD, and at this same

instant there will also be a wavelet around Q as center

of radius (BD—PQ) = (BD—BK)=KD. According to

Huygens, the problem consists, therefore, in finding the

surface which is tangent at a given instant to all these

secondary waves. Produce the straight line LA on the

other side of the reflecting surface to a point L' such

that AL' = LA, and draw the straight line L'Q, and mark
the point R where this straight line produced meets

the semicircle described around Q as center with radius

KD = QR. Since LQ +QR = LK +KD = LD, obviously,
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L /R = L /D; and therefore a circle described around L' as cen-

ter with radius equal to L'D will touch at R the semicircle

described around Q as center with radius equal to QR.
Moreover, it will also touch at a point C on the straight

line LA the semicircle described around A as center with

radius AC = BD. Consequently, this circle will be the.

envelop of all these semicircles. The reflected wave-front,

therefore, is obtained by revolving the arc DCF around LL'

as axis. The straight line QR is the path of the reflected

ray corresponding to the incident ray PQ; the angle of in-

cidence at Q is equal to the angle ALQ and the angle of re-

flection is equal to AI/Q, and these angles are evidently

equal, in agreement, therefore, with the law of reflection.

15. Image in a Plane Mirror.—In Fig. 19 the plane mirror

bisects at right angles the straight line LL', and since the

Fig. 20.—L' is image of object-point L in plane mirror AD;
AL = Im-

position of the point L' is independent of the position of

the incidence-point Q (Fig. 20), all the rays coming from

the luminous point L and falling on the plane mirror will

be reflected along paths which, when prolonged backwards,
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all meet in the point L'. Thus, to a homocentric bundle of

incident rays reflected at a plane mirror there corresponds also

a homocentric bundle of reflected rays. This remarkable

property of converting a homocentric bundle of rays into

another homocentric bundle is characteristic of a plane

mirror, because no other optical device is capable of it. ex-

cept under conditions that are more or less unrealizable in

practice. Thus, the image 1/ of an object at L is found by
drawing a straight line from L perpendicular to the plane

mirror, and producing this line on the other side of the

mirror to a point L' such that the line-segment LI/ is bi-

sected by the plane of the mirror; so that an object in front

of a plane mirror is seen in the mirror at the same distance

behind it. The image in this case is virtual (§ 8). The late

Professor Silvanus Thompson in his popular lectures

published under the title Light Visible and Invisible de-

scribes the following simple method of showing how the

rays from a candle flame are reflected at a plane mirror

(Fig. 21). If a vertical pin mounted on a horizontal base-

board is illuminated by a lighted candle, the position of

the shadow is determined by the line joining the top of the

pin with the source of light. If the pin and the candle are

both in front of a plane mirror placed at right angles to the

base-board, a second shadow will be cast by the pin on ac-

count of the reflected rays from the candle that are inter-

cepted by it, and this shadow will be precisely such as would

be produced by a candle flame placed behind the mirror

at the place where the image of the actual flame is formed,

as may be proved by removing the mirror and transferring

the candle to the place where its image was.

If the bundle of incident rays instead of diverging from

a point L in front of the plane mirror converged towards

a point L behind it (as could easily be effected with the aid

of a convergent lens), a real image (§ 8) will be produced at

a point L' at the same distance in front of the mirror as the

virtual object-point L was beyond it.



Fig. 21.—Shadows cast by an object in front of a plane mirror when object
is illuminated by point-source (from actual photograph), showing that
the source and its image are at equal distances from the mirror.





15] Image in Plane Mirror 39

The image of an extended object is the figure formed by

the images of all of its points separately. The diagram

(Fig. 22) shows, for example, how an eye at E would see

the image L'M' of an object LM reflected in a plane mirror.

The series of parallel lines joining corresponding points of

Fig. 22.—Image L'M' of object LM in plane mirror ZZ.

object and image will be bisected at right angles by the

plane of the mirror.

The dimensions of the image in a plane mirror are ex-

actly the same as those of the object. Moreover, the top

and bottom of the image correspond with the top and bot-

tom of the object, that is, the image is erect. Also, the

right side of the image corresponds with the right side of

the object, and the left side of the image with the left side

of the object (Fig. 23), although it is frequently stated in

books on optics that when a man stands in front of a mirror

the right side of the image shows the left side of the person,

and that if the man extends his right hand, the image will

extend its left hand. The true explanation of the so-called

"perversion" of the image in a plane mirror, which is strik-

ingly seen when a printed page is held in front of the mirror,

is that it is the rear side of the image that is opposite the front
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side of the object. The image of a printed page in a mirror

has exactly the same appearance as it would have if the

page were held in front of a bright light and it was viewed

from behind through the paper. When a person looks in

a mirror at his own image, his image appears to be looking

back at him in the opposite direction, if he faces east, his

image faces west, and if we call the east side of object or

image its front side and the west side its rear side, then the

rear side of the image is turned towards the front side of

the object; although, because this side of the image cor-

responds to the front side of the object, it is a natural mis-

take to regard it as also the front side of the image. The
explanation of the common impression that, whereas up

and down remain unchanged in the image of an object in

a plane mirror, right and left are reversed, is probably be-

cause a person regarding his own image under such circum-

stances is unconsciously disposed to transfer himself men-

tally into coincidence with his image by a rotation of 180°,

not around a horizontal, but around a vertical axis, thus

producing a confusion of mind as to right and left but not

as to top and bottom. The reason why this mental revolu-

tion is performed around the vertical axis seems to be due

partly to the circumstance that this movement can be

readily executed in reality, and partly also perhaps to the

fact that the human body happens to be very nearly

symmetrical with respect to a vertical plane.

16. The Field of View of a Plane Mirror.—In the adjoin-

ing diagram (Fig. 24) the straight line GH represents the

trace in the plane of the paper of the surface of a plane mir-

ror, and the point marked O' shows the position of the center

of the pupil of the eye of a person who is supposed to be

looking towards the mirror. Evidently, the straight lines

HO', GO' drawn to 0' from the points G, H in the edge of

the mirror will represent the paths of the outermost reflected

rays that can enter the eye at 0', and therefore the field of

view (§ 9) is limited by the contour of the mirror just



Fig. 23.—Image of object in plane mirror (from actual photograph).
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as if the observer were looking into the image-space through

a hole in the wall that exactly coincided with the place oc-

cupied by the mirror. Corresponding to the pair of re-

flected rays HO' and GO' intersecting at O' there would be

a pair of incident rays directed along the straight lines HO

:
&**

Fig. 24.—Field of view of plane mirror for given position of eye.

and GO towards a point on the other side of the mirror,

and it is evident that 0' will be the real image of a virtual

object-point at O (§ 15). Any luminous point lying in front

of the plane mirror within the conical surface formed by

drawing straight lines such as OG, OH from to all the

points in the edge of the mirror will be visible by reflected

light to an eye placed at 0', and hence this cone limits the

field of view of the object-space.

Through O' draw a straight line parallel to GH, and take

on it two points C', B' at equal distances from O' on oppo-

site sides of it, and let us suppose that B'C represents the

diameter in the plane of the diagram of the pupil of the eye.

Construct the image BOC of the eye-pupil B'O'C. Then

if P designates the position of a luminous point lying any-
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where within the field of view of the object-space, it is clear

that the incident rays PO, PC and PB will be reflected at

Fig. 25.—Deviation of a ray reflected twice in suc-

cession from a pair of inclined mirrors.

the. mirror into the pupil of the eye in the directions P'O',

P'C and P'B', as though they had all come from the point

P' which is the image of P. This imaginary opening or vir-

Fiq. 26.—Deviation of a ray reflected twice in suc-

cession from a pair of inclined mirrors.

tual stop BOC towards which the incident rays must all be

directed in order to be reflected into the eye-pupil B'O'C is
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called the entrance-pupil of the optical system consisting

of the plane mirror and the eye of the observer; and the

pupil of the eye itself is called here the exit-pupil (see Chap-

ter XII). Since the entrance-pupil limits the apertures of

the bundles of rays that ultimately enter the eye, it acts

as the aperture-stop of the system (§ 11).

17. Successive Reflections from two Plane Mirrors.

—

Any section made by a plane perpendicular to the line of in-

tersection of the planes of a pair of inclined mirrors is called

a principal section of the system. If a ray lying in a prin-

cipal section is reflected successively at two plane mirrors
}

it

will be deviated from its original direction by an angle equal to

twice the dihedral angle between the mirrors.

Let the plane of the principal section intersect the planes

of the mirrors in the straight lines OM, ON (Figs. 25 and

26) ; and let 7 = ZMON denote the angle between the mir-

rors. The ray PQ lying in the plane MON is incident on

the mirror OM at the point Q, whence it is reflected along

the straight line QR, meeting the mirror ON at the point

R, where it is again reflected, proceeding in the direction

RS. Let the point of intersection of the straight lines PQ
and RS be designated by K. Then Z PKR is the angle be-

tween the original direction of the ray and its direction after

undergoing two reflections, and we must show that this

angle is equal to 2 7.

Draw the incidence-normals at Q and R, and prolong

them until they meet at J. Then by the law of reflection

the straight lines QJ and RJ bisect the angles PQR and

QRS, respectively.

In Fig. 25, ZPKR=ZPQR+ZQRS= 2(ZJQR+ZQRJ)
= 2(180° -ZRJQ) = 27;

and in Fig. 26, Z PKR= Z PQR - Z SRQ
= 2(180°-ZRQJ-ZJRQ)
= 2ZQJR-27.

18. Images in a System of Two Inclined Mirrors.—When
a luminous point lies in the dihedral angle between two
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plane mirrors, some of its rays will fall on one mirror and

some on the other, and consequently there will be two sets

of images. In Fig. 27 the plane of the diagram is the prin-

cipal section which contains the point-source S, and the

straight lines OM, ON represent the traces of the mirrors

Fig. 27.—Images of a luminous point S in a pair of inclined

mirrors OM and ON.

in this plane. The rays which fall first on the mirror OM
will be reflected as though they came from the image P x of

the luminous point S in this mirror. Some of these rays

falling on the mirror ON will be again reflected and proceed

thence as though they came from the point P2 which is

the image of P x in the mirror ON. Thus, by successive re-

flections, first at one of the mirrors and then at the other,

a series of images Pi, P2 , etc., will be formed by those rays

which fall first on the mirror OM ; let us call this the P-series

of images. Similarly, the rays that fall first on the mirror

ON will produce another series of images Q x , Q2 , etc., which

will be called the Q-series. Each of these series will termi-

nate with an image which lies behind both mirrors in the
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dihedral angle COD opposite the angle MON between the

mirrors themselves; because rays which, after reflection

at one of the mirrors, appear to come from a point thus sit-

uated cannot fall on the other mirror, and so there will be

no more images after this one.

Since the straight line OM is the perpendicular bisector

of the line-segment SP X , the points S and Px are equidistant

from every point in the straight line OM; and, similarly,

since P2 is the image of Pi in the plane mirror ON, these two

points are likewise equidistant from every point in the

straight line ON. Accordingly, the three points S, P^ P2

are all equidistant from the point where the straight lines

OM and ON intersect. Applying the same reasoning to

all the other images, we perceive that the images of both

series are ranged on the circumference of a circle whose center

is at and whose radius is OS.

In the following discussion of the angular distances of

the images from the luminous point S, the angles will be

reckoned always in the same sense, either all clockwise or

all counter-clockwise. Let y = Z AOB denote the angle be-

tween the two mirrors, the letters A and B referring to the

points where the circle crosses the planes of the mirrors OM
and ON, respectively. Also, let a=Z AOS, j8 =ZSOB de-

note the angular distances of S from A, B, respectively, so

that a+/3=y. Then

ZPiOS = 2a;

ZSOP2 = ZSOB+ZBOP2=0+ZPiOB = 2(a+/3) = 2Y;
Z P 3OS = Z P3OA+ a=Z AOP2+ a = Z SOP2+ 2 a

= 27+2a;
Z SOP 4= Z SOB+ Z BOP4= P+ Z P3OB

= 2/3+ZP 3OS = 2(a+/3+7)=47;
Z P5OS = Z P5OA+ a= Z AOP4+ a = Z SOP 4+ 2 a

= 47+2a.
In general, therefore,

ZSOP2k= 2/c7, ZP2k+1OS = 2/b7+2a,

where P2k , P2k +i designate the positions of the 2fcth and
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(2fc+l)th images of the P-series, k denoting any integer,

and where the angles SOP2k , P2k+iOS are the angles sub-

tended by the arcs SBP2k , P2k+iAS, respectively. Similarly,

for the Q-series of images we find

:

ZQ2k0S = 2A;7, Z80Q2k+1 = 2ky+2p,
where these angles are the angles subtended by the arcs

Q2kAS, SBQ2k+1 , respectively.

Evidently, the image P2k+i will fall on the arc CD be-

hind both mirrors, if arc P2k+1AS>arc DAS, that is, if

2&Y+2 a> 180° -0;

and, by adding (/3-a) to both sides of this inequation,

and dividing through by y, this condition may be expressed

as follows:

, ,

' 180°-a

In the same way we find that the image P2k will fall between

C and D if

7
180° -a

2k>—j—'

Thus, the total number of images of the "P-series
t
whether it

be odd or even, will be given by the integer next higher than

(180°— a)/ y; and, similarly, the total number of images

of the Q-series will be given by the integer next higher than

(180°- PHy.
The only exception to this rule is when the angle y is

contained in (180°— a) or (180°— /3) an exact whole num-

ber of times; in the former case the last image of the P-series

falls at C, and in the latter case the last image of the Q-series

falls at D; and instead of taking the integers next above

the quotient (180°— a)/y or (180°—fi)/y, we must take

the actual integer obtained by the division. An example

will make the matter clear. Thus, suppose 7 = 27°, a = 8°,

then /?= 19°, and the integers next higher than (180°

—

a)jy

and (180°

—

f})/y will be 7 and 6, respectively; hence in

this case there will be 7 images of the P-series and 6 images

o the Q-series or 13 images in all. But if a = 10° and fi
= 17°,
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each series will be found to have 7 images, 14 images in

all. The exceptional case occurs when a= 9° and /3= 18°,

for then (180°— /3)/y = 6, and hence there will be 7 P-images

and 6 Q-images.

If the angle y between the mirrors is an exact multiple

of 180°, that is, if 180°/y = p, where p denotes an integer,

the integers next higher than (180°- a)/J and (180°- P)/y
will both be equal to p,

no matter what may be

the special position of

the object between the

two mirrors; so that in

such a case the number

of images in each series

will be equal, but the last

image of one set will co-

incide with the last of

the other. In fact, the

points S, P2 , P4 , . . .

Q47 Q2 and the points Fig. 28.—Images of a luminous point in a

p p Q Q arp pair of plane mirrors inclined to each
1, 3, • • •

v*3> ^1
other at an angle of 60°.

the vertices 01 two equal

regular polygons, of p sides each; and if p is odd, the polygon

P1P3 . . . Q3Q1 will have one of its corners between C and

D, whereas if p is even, one of the corners of the polygon

SP2P4 . . . Q4Q2 will fall between C and D; in either case

this vertex is the position of the last image of both series.

Thus, for example, if 7 = 60° (Fig. 28), then p = 3, and the

two polygons are the equilateral triangles SP2Q2 and P1P3Q1

(orPAQx).
The toy called a kaleidoscope, devised by Sir David

Brewster (1781-1868), consists essentially of two long nar-

row strips of mirror-glass inclined to each other at an angle

of 60° and inclosed in a cylindrical tube. One end of the

tube is closed by a circular piece of ground glass whereon

are loosely disposed a lot of fragments of colored glass or
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beads, and at the other end of the tube there is a peep-hole.

When the instrument is held towards the light, an observer

looking in it will see an exquisitely beautiful and symmetrical

pattern formed by the colored objects and their images, the

form of which may be almost endlessly varied by revolving

the tube around its axis so that the bits of glass assume new

Fig. 29.—Path of ray reflected into eye from a pair of inclined

mirrors.

positions. In fact, this device has been turned to practical

use in making designs for carpets and wall-papers.

19. Construction of the Path of a Ray Reflected into the

Eye from a Pair of Inclined Mirrors.—In order to trace the

paths of the rays by which a spectator standing in front of a

pair of inclined mirrors sees the image of a luminous point,

it is convenient to assume, for the sake of simplicity, that

the eye at E in Fig. 29 lies in the plane of the paper. The
first step in the construction of the path of the ray is to draw

the straight line from the given image-point to the eye,

because if the eye sees this point the light that enters the
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eye must arrive along this line. If this line does not cross

the mirror in which the image is produced, this particular

image will not be visible from the point E. Now join the

point where this line meets the mirror with the preceding

image in the same series; the part of this line that lies be-

tween the two mirrors will evidently show the route of the

Fig. 30.—Showing how an eye at E sees the images of a lumi-
nous point S in a rectangular pair of plane mirrors.

light before its last reflection. Proceeding in this fashion

from one mirror to the other, we shall trace backwards the

zigzag path of the ray until we arrive finally at the luminous

source at S. Consider, for example, the image P3 formed

in the mirror OA in Fig. 29. This image is visible to the

eye at E because the straight line P3E cuts at K the mirror

OA. If J and H designate the points where the straight

lines KP2 and JPi meet the mirrors OB and OA, respectively,

the broken line SHJKE will represent the path of the ray

from the source at S into the eye at E. Fig. 30 shows how
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an eye at E in front of two perpendicular plane mirrors can

see the images Pi, P2 , Qi and Q2 .

20. Rectangular Combinations of Plane Mirrors.—In a

rectangular combination of two plane mirrors (7 = 90°) the

image formed by two successive reflections will be in-

verted in the principal section of the system, but in any

plane at right angles to a principal section the image will

be erect. For example, if an object is placed in front of two

vertical plane mirrors at right angles to each other, the

image produced by two reflections will have the same posi-

tion and appearance as if the object had been revolved bodily

through an angle of 180° about a vertical axis coinciding

with the line of intersection of the planes of the mirrors, as

represented in Fig. 31. In this case the image remains ver-

tically erect, whereas it is horizontally inverted. On the

other hand, if one of the mirrors is vertical and the other

horizontal, the image by twofold reflection will have the

same position and appearance as if the object had been

revolved through 180° around a horizontal axis coinciding

with the line of intersection of the two mirrors (Fig. 32);

that is, the image now will be upside down but not inverted

horizontally.

Therefore, in order to obtain an image that is completely

reversed in every respect, two rectangular combinations of

plane mirrors may be employed with their principal sections

mutually at right angles, so disposed that the rays coming

from the object will be reflected in succession from each of

the four plane surfaces. An auxiliary system of this descrip-

tion is sometimes used in connection with an optical instru-

ment for the purpose of rectifying the image which otherwise

would be seen inverted. A rectifying device depending on this

principle is the so-called Porro prism-system (1852), utilized

by Abbe (1840-1905) in the design of the famous prism binocu-

lar telescope or field-glasses (c. 1883) . A sketch of the arrange-

ment is shown in Fig. 33. Two rectangular prisms are placed

in the tube of the instrument, between the objective and the







Fig. 32.—Image of an object in a rectangular pair of plane mirrors (from

actual photograph) ; showing how the last image is obtained by rotating

the object through 180* around the line of intersection of the mirrors.

One mirror vertical, the other horizontal.
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ocular, with their principal sections at right angles to each

other. The axial ray, after traversing the objective, crosses

normally the hypothenuse-face of the first prism and is

totally reflected (see § 36), in the plane of a principal section,

at each of its two per-

pendicular faces so as to

emerge from the hypoth-

enuse-face in a direction

precisely opposite to that

which it had when it first

crossed this surface. This

ray now undergoes a simi-

lar cycle of experiences in

a principal section of the

second prism, and finally

emerges from this prism

in the Same direction as FlG - 33.—Porro prism-system in prism
• , i j i ., , .i binocular field glasses.
it had when it met the

first prism. A ray parallel to the axial ray and lying above

a horizontal plane containing the axis will be converted by
virtue of the two reflections in the first prism into a ray

whose path lies below this plane; and, similarly, a ray par-

allel to the axis and lying on one side of a vertical plane

containing the axis will, in consequence of the two reflec-

tions within the second prism, be converted into a ray whose

path lies on the opposite side of this vertical plane. Thus,

the combined effect of the two reflecting prisms together

will be to reverse completely the position of the ray with

respect to the horizontal and vertical meridian planes, so

that the ray will issue from the system on opposite sides of

both these planes. If the system of prisms were removed,

the image in the instrument would appear inverted, but by

interposing the prisms in this fashion the image will be

rectified and oriented exactly in the same way as the object;

which in the case of many optical instruments is an essential

consideration.
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21. Applications of the Plane Mirror.—It is hardly-

necessary to say that the plane mirror for various pur-

poses has been in use among civilized peoples of all ages;

although the use of mirrors as articles of household fur-

niture and decoration does not go back farther than the

early part of the 16th century. By a combination of two

or more plane mirrors a lady can arrange the back of

Fig. 34.—Porte lumi&re.

her dress and in fact see herself as others see her. With

the aid of a mirror or combination of mirrors many in-

genious " magical effects" are produced in theaters. The

plane mirror also constitutes an essential part of numerous

useful scientific instruments in some of which its only duty

is to alter the course of a beam of light, whereas in various

forms of goniometrical instruments and contrivances for de-

termining an angular magnitude that is not easily measured
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directly the angle in question is ascertained indirectly by
observing the angle turned through by a ray of light which

is reflected from a plane mirror.

22. Porte Lumiere and Heliostat.—As good an illustra-

tion as can be given of the use of a plane mirror for chang-

ing the direction of a beam of sunlight is afforded by the

Fig. 35.—Heliostat.

porte lumiere (Fig. 34), which consists essentially of a plane

mirror ingeniously mounted so as to be capable of rotation

about two rectangular axes, whereby it may be readily ad-

justed in any desired azimuth and reflect a beam of sun-

light through a suitable opening in the wall of the building

to any part of the interior of the room.

However, owing to the diurnal movement of the sun,
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a continual adjustment of the mirror is necessary in order

to keep the spot of light for any length of time at the place

in the room where it is needed, and sometimes this manipu-

lation is very inconvenient and annoying, especially in the

case of a laboratory experiment extending perhaps over

a considerable part of a day. Thus, for example, in study-

ing the solar spectrum it is often desirable to illuminate the

slit in the collimator tube of the spectrometer for hours at

a time. For such purposes it is better to use a heliostat

(Fig. 35), which is contrived so that the plane mirror is con-

tinuously revolved by clockwork around an axis parallel

to the earth's axis so as to preserve always the same relative

position with respect to the sun in its apparent diurnal

motion in the sky. The mirror can also be turned about

a horizontal axis, and it has first

to be adjusted about this axis so

that the rays of the sun are re-

flected towards the north pole

of the celestial sphere, that is,

parallel to the axis of the earth.

The mirror being adjusted at

this angle, which will depend on

the declination of the sun above

Fig. 36.-PrinciPle of heliostat. or below^ the celestial equator,

and turning at the rate of 15°

per hour around an axis parallel to the axis of rotation of

the earth, it is evident that the rays of the sun will continue

to be reflected constantly in the same direction. Suppose,

for example, that the mirror is adjusted in the position

ZZ (Fig. 36) so that the ray SB coming from the sun at S is

reflected at B in the direction BP parallel to the axis of the

earth and therefore parallel to the axis of rotation AB of the

mirror. If the polar distance of the sun is denoted by
2a= ZPBS, and if the angle between the normal to the

mirror and the axis of rotation is denoted by r), then, evi-

dently, rj = a. If the sun's declination on a certain day
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is +10°, then 2 a = 90°- 10° = 80°, and 77 = 40°. If, on the

other hand, the sun is 10° below the equator, 2a=100° and

77 = 50°.

The heliostat is provided also with a fixed mirror which

reflects the rays from the rotating mirror in a definite di-

rection, as desired, usually in a horizontal direction into

the room where the sunlight is to be used. Generally, the

instrument is mounted on a permanent ledge outside the

window; sometimes it is placed on the roof of the building

and the fixed mirror adjusted so as to send the sun's rays

down a vertical tube at

the bottom of which there

is another mirror placed

at an angle of 45° with S^~—' ^^^C^
the vertical where the

rays are once more re-

flected so that the beam
of sunlight which enters

the room will be hori-

zontal.

23. Measurement of

the Angle of a Prism.—
Another laboratory ap-

plication of the principle

of a plane mirror is seen

in the method of using a

goniometer to ascertain
FlG

-
37-Measurement of angle of prism.

the dihedral angle between two plane faces of a glass prism

(§ 48) . The angle that is actually measured by the goniom-

eter is the angular distance between the images of a distant

object as seen in the two faces of the prism. Parallel rays

coming from a far-off source at S (Fig. 37) and incident on

the two faces of the prism that meet in the edge V are re-

flected as shown in the diagram, and the angle between the

two directions of the reflected rays is obviously equal to

twice the dihedral angle /3.
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24. Measure of Angular Deflections by Mirror and

Scale.—The angular rotation of a body, for example, the

deflection of the magnetic needle of a galvanometer, is fre-

quently measured by attaching a mirror to the rotating

body from which a beam of light is reflected. This reflected

light acts as a long weightless pointer whereby the actual

Fig. 38.—Mirror, telescope and scale for measure-
ment of angles.

movement of the body can be magnified to any extent with-

out in the least affecting the sensitiveness of the apparatus.

In Fig. 38 the plane mirror which is capable of rotation

about an axis perpendicular at A to the plane of the paper

is represented in its initial position by the line-segment

marked 1. The straight line MN in front of the mirror and

at a known distance (c?= AB) from it represents a scale

graduated in equal divisions. An eye at E looking through

a telescope pointed towards A will see the image in the mirror

of the scale-division at S, the so-called " zero-reading," be-

cause the light from S incident at A on the mirror in the

position 1 (" equilibrium-position") is reflected along AE
into the eye at E. If now the mirror is turned through an

angle 6 into the position marked 2, another scale-division

will come into the field of view of the telescope and coin-
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cide with the cross-hair in the eye-piece. If this scale-

division corresponds to the point marked P, it is the light

that comes along PA that is now reflected along AE into

the eye at E; and evidently, according to § 13, Z PAS = 2 0.

In making a measurement by this method, the three points

designated by S, B and E are generally adjusted so as to

be very near together, if not actually coincident. If they

were coincident, the planes of the mirror and scale would

be parallel, and the axis of the telescope would coincide

with the straight line BA perpendicular to the scale at B.

But in any case the Z BAS = e will be a constant, depending

partly on the initial position of the mirror and partly on

the direction of the axis of the telescope; thus,

tan € = a/d,

where a = BS. If, therefore, we put x = SP, we have:

x
-j = tan ( e+ 2 6)— tan e

;

whence, since the value of x can be read off on the scale, it

will be easy to calculate the value of the required angle 6

through which the mirror has been turned. In many cases

where this method is employed the angles denoted by 6 and

€ are both so small that there will be little error in sub-

stituting the angles themselves in place of their tangents.

Under these circumstances the above formula will be greatly

simplified, for the angle e will disappear entirely, and we
shall obtain :

xe=
Td>

where, however, it must be noted that this expression gives

the value of the angle 6 in radians. The value of 6 in de-

grees is found by multiplying the right-hand side of this

formula by 180/ 7T, so that we obtain:

u =—j degrees.
Tr.a

A lamp and scale is sometimes used instead of a telescope

and scale, the light of the lamp being reflected from the
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mirror on to the scale which is usually made of translucent

glass, so that it is easy to read the position of the spot of

light.

25. Hadley's Sextant.—Another instrument which utilizes

the principle of § 17 is the sextant, which is employed for

Fig. 39.—Principle of sextant.

measuring the angular distance between two bodies, for ex-

ample, the altitude of the sun above the sea-horizon. The
plan and essential features of this apparatus are shown in

Fig. 39. At the center A of a graduated circular arc ON
a small mirror is set up in a plane at right angles to that of

the arc. This mirror can be turned about an axis perpendic-

ular to the plane of the paper and passing through A. Rig-

idly connected to this mirror and turning with it is a long

solid arm AP whose other end P, provided with a vernier

scale, moves over the arc ON, whereby the angle through

which the mirror turns can be accurately measured. A little

beyond the extremity N of the graduated part of the arc,

a second mirror B is erected facing the first mirror. The

plane of this mirror is likewise perpendicular to that of the

circle, but from the upper half of it the silver has been

removed, so that this portion of the mirror B is transparent.

Moreover, this mirror is fixed with respect to the instru-

ment. An observer looking through a peep-hole or tele-
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scope attached to the instrument towards the mirror B may-

see a distant object through the upper transparent part of

this mirror, and at the same time he may also see just below

it the image of a second object reflected in the lower half

of the glass. When the planes of the two mirrors A and B
are parallel, the zero-mark of the vernier on the movable

arm coincides with the zero-mark of the graduated arc.

Suppose, for example, that when the two mirrors are par-

allel to each other, the instrument is pointed at a distant

Fig. 40.—Model of mirror sextant.

object, say, a star at Si, which will be seen directly through

the upper half of the fixed mirror B. At the same time the

observer will see an image of the object Si by rays which

have been reflected from the mirror A to the mirror B and

thence into the eye at E; for if the two mirrors are parallel,

the direction of a ray after two reflections will be the same

as its initial direction. If now the mirror A is turned until

the image of another object at S2 comes into the field of

vision, the two objects Si and S2 will be seen simultaneously,

for with the mirror at A in this new position the incident ray

S2A will be the ray that is reflected from A to B and thence,

as before, into the eye at E. Moreover, since the angle between

the original direction S2A of this ray and its final direction
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S XA is equal to double the angle between the planes of the

two mirrors, that is, is equal to 2 6, where 8 = Z OAP, the

angular distance between the objects at Si and S2 must be

equal to 2 6, that is, Z SiAS2 = 2 0. In order to save trouble

in making the readings, half-degrees on the graduated arc

are reckoned as degrees, so that the value of the angle 2 6 is

read directly on the scale. As the angular distance between

the objects will seldom exceed 120°, and since, in fact, the

method is not very accurate for angles greater than this,

the actual length of the graduated arc need not be greater

than about 60° or one-sixth of the circumference; whence

the name sextant is derived.

A simple model of a mirror sextant is shown in Fig. 40.

For accurate measurements the instrument is made of metal

with a scale etched on a silver strip. Moreover, a telescope

is used instead of a peep-hole; so that with a fine sextant it

is comparatively easy to measure the angular distance be-

tween two points to within one-half minute of arc. One

great advantage of this instrument is its portability, and

since it does not have to be mounted on a stand, it is very

serviceable on shipboard for measurements of altitude and

determinations of latitude, etc.

PROBLEMS

1. The top of a vertical plane mirror 2 feet high is 4 feet

from the floor. The eye of a person standing in front of the

mirror is 6 feet from the floor and 3 feet from the mirror.

What are the distances from the wall on which the mirror

hangs of the farthest and nearest points on the floor that

are visible in the mirror? Ans. 6 ft. ; 18 in.

2. A ray of light is reflected at a plane mirror. Show that

if the mirror is turned through an angle 6, the reflected ray

will be turned through an angle 2 0.

3. Show that the deviation of a ray reflected once at each

of two plane mirrors is equal to twice the angle between the

mirrors.
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4. If a plane mirror is turned through an angle of 5°,

what is the deflection indicated by the reading on a straight

scale 100 cm. from the mirror? Ans. About 17.6 cm.

5. Find the angle turned through by the mirror when the

deflection on the scale in the preceding example is 10 cm.?

Ans. 2° 52'.

6. What must be the length of a vertical plane mirror in

order that a man standing in front of it may see a full length

image of himself? Ans. The length of the mirror must be

equal to half the height of the man.

7. Show that a plane mirror bisects at right angles the

line joining an object-point with its image.

8. A ray of light proceeding from a point A is reflected

from a plane mirror to a point B. Show that the path pur-

sued by the light is shorter than any other path from A to

the mirror and thence to B.

9. Give Huygens's construction, (1) for the reflection

of a p'ane wave at a plane mirror, and (2) for the reflection

of a spherical wave at a plane mirror.

10. Explain clearly how to determine the limits of the

field of view in a plane mirror for a given position of the eye

of the spectator.

11. A candle is placed between two parallel plane mirrors.

Show how an observer can see the image of the candle pro-

duced by rays which have been twice reflected at one mirror

and three times at the other. Draw accurate diagram show-

ing the paths of the rays, the positions of the images, etc.;

and give clear explanation of the figure.

12. OA and OB are two plane mirrors inclined at an angle

of 15°, and P is a point in OA. At what angle must a ray

of light from P be incident on OB in order that after three

reflections it may be parallel to OA? Ans. 45°.

13. Show that the image of a luminous object placed

between two plane mirrors all He on a circle.

14. Show how by means of two plane mirrors a man
standing in front of one of them can see the image of the back
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of his head. Trace the course of the rays from the back of

his head into his eye and explain clearly.

15. Show by a diagram, with clear explanations, how
one sees the image of an arrow in a plane mirror.

16. Construct the image of an arrow formed by two re-

flections in a pair of inclined mirrors, (1) when the mirrors

are at right angles, and (2) when the angle between the

mirrors is 60°.

17. Show how a horizontal shadow of a vertical rod can

be thrown on a vertical screen by a point-source of light with

the aid of a plane mirror. Draw a diagram.

18. An object is placed between two plane mirrors in-

clined at an angle of 45°. Show by a figure how a spectator

may see the image after four successive reflections. Give

clear explanation.

19. Two plane mirrors are inclined at an angle of 50°.

Show that there will be 7 or 8 images of a luminous point

placed between them, according as its angular distance from

the nearer mirror is or is not less than 20°.

20. Find the number of images formed when a bright point

is placed between two plane mirrors inclined to each other

at an angle of 25°. Ans. 14 or 15 images according as the

angular distance of the luminous point from the nearer mir-

ror is or is not less than 5°.

21. A luminous object moves about between two plane

mirrors, which are inclined at an angle of 27°. Prove that

at any moment the number of images is 13 or 14 according

as the angular distance of the luminous point from the nearer

mirror is or is not less than 9°.

22. The angle between a pair of inclined mirrors is 80°.

Find the position of an object which is reproduced by 5

images. Ans. The object must be less than 20° from the

nearer mirror.

23. Describe a sextant with the aid of a diagram, and ex-

plain its use.

24. Describe and explain the heliostat.
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25. Construct the image of the capital letter F as seen in

a plane mirror.

26. When a candle-flame is placed in front of a screen

with a pin-hole opening, an image of the flame is formed on

a second screen placed parallel to the first. But if the second

screen is replaced by a plane mirror, the image will be formed

on the back of the first screen. Explain how this happens.

27. Explain clearly (with diagram, formula, etc.) the

method of using a mirror and scale for measurement of

angles.

28. Describe how the dihedral angle of a glass prism is

measured on a goniometer-circle.



CHAPTER III

REFRACTION OF LIGHT

Fig. 41.—Coin at bottom of bowl rendered

visible by filling bowl with water.

26. Passage of Light from One Medium to Another.—
Hardly any one can have failed to observe that the course of

light in passing obliquely from water to air is abruptly changed

at the surface of the water. For example, if a coin is placed

at A in the bottom of a china bowl (Fig. 41), and if the eye

is adjusted at a point C
so that the coin is hid

from view by the side of

the vessel, then, without

altering the position of

the eye, the coin can be

made visible merely by

pouring water in the

bowl up to a certain level.

The broken line ACB illustrates how a ray proceeding from

A may be bent at the surface of the water so as to pass over

the edge of the bowl and enter the eye at C. It is true the

coin will will not appear to be at A but at a point A' nearer

the surface of the water and displaced a little sideways to-

wards the eye, because the rays that come to the eye inter-

sect at this point A' (§ 42). A clear pool of water seems to

be shallower than it really is, and this illusion is greater in

proportion as the line of sight is more oblique, so that bright

objects at the bottom of the pool appear to be crowded to-

gether towards the surface. When a stick is partly immersed

in water, the part under water appears to be bent up to-

wards the surface (§ 42).

This bending of the rays which takes place when light

crosses the boundary between two media is called refraction.

64



Fig. 42.—Law of Refraction.
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The path of a beam of sunlight through water can easily

be shown by mixing a little milk in the water or by stir-

ring in it a minute quantity of chalk-dust, while a puff of

smoke will at once reveal the track of the beam in the air,

so that the phenomena of

refraction can readily be

exhibited to the eye. In

every case it will be found

that the ray is bent farther

from the incidence-normal

in the rarer or less dense

medium (see § 30) ; and

here also, as in the case

of reflection, there is a

perfectly definite connec-

tion between the direction of the incident ray and that of

the corresponding refracted ray.

27. Law of Refraction.—In Fig. 42 the straight line AB
represents the path of a ray incident at the point B on a

smooth refracting surface separating two media which for

the present will be designated by the letters a and b. The
straight line NN' drawn perpendicular to the plane which

is tangent to the refracting surface at B represents the

incidence-normal; and the plane of the paper which con-

tains the incident ray and the incidence-normal is the plane

of incidence, as already defined (§ 13). The line ZZ repre-

sents the trace of the refracting surface in this plane. And,

finally, the path of the refracted ray is shown by the straight

line BC. The angles of incidence and refraction are defined

to be the acute angles through which the incidence-normal

has to be turned in order to bring it into coincidence with

the incident and refracted rays, respectively. Thus, if

these angles are denoted by a, a', then

a = ZNBA, a' = ZN'BC.
In the figure as drawn the angle a is represented as greater

than the angle a', so that, according to the statement at
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the end of § 26, the medium a is less dense or "rarer" than

the medium b.

Before stating the relation which is found to exist be-

tween the angles a and a! , it is necessary to allude to

Newton's great discovery that sunlight and indeed so-

called " white light" of any kind, as, for example, the light

of an arc lamp, is composed of light of an innumerable

variety of colors (see Chapter XIV), as may be shown by
passing a beam of sunlight through a glass prism, whereby

it will be seen that white light is a mixture of all the colors

of the spectrum in all their infinite varieties of hues. On
the other hand, monochro?natic light, as it is called, is light

of some one definite color, as, for example, the yellow light

emitted by a sodium flame which may be obtained by
burning common salt in the flame of a Bunsen burner.

In geometrical optics, unless we are specially concerned

with the investigation of color-phenomena (as in Chapter

XIV), it is nearly always tacitly assumed that the source

of the light is monochromatic.

The law of refraction, as found by experiment, may now
be stated as follows

:

The refracted ray lies in the plane of incidence on the op-

posite side of the normal in the second mediumfrom the incident

ray in the first medium; and the sines of the angles of incidence

and refraction are to each other in a constant ratio, the value of

which depends only on the nature of the two media and on the

color (or wave-length) of the light.

This constant ratio, denoted by the symbol nah ,
is called

the relative index of refraction from the first medium (a) to

the second medium (b) for light of the given color; thus,

sin a
£^~%;

the value of this constant, as a rule, being greatest for violet

and least for red light, so that the violet rays are the most

" refrangible" of all. When light is refracted from air (a) to

water (w) the relative index of refraction is, approximately,
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naw =4/3, and hence under these circumstances sina/ =

% sin a. Although there are many different varieties of

optical glass, for rough calculations the value of the rela-

tive index of refraction from air (a) to glass (g) may be

taken as nag = 3/2; which means that the sine of the angle

which the ray makes with the normal in glass is about two-

thirds of the sine of the angle which the corresponding ray

makes with the normal in air.

Although the law of refraction is quite simple, it some-

how eluded discovery until early in the seventeenth century

when the true relation between the angle of refraction and

the angle of incidence was first ascertained by Willebrord
Snell (1591-1626) or Snellius, of Leyden, and the law is,

therefore, often referred to as Snell's Law of Refraction.

The law was first published by the French philosopher

Descartes (1596-1650), who had probably seen Snell's

papers, although he does not allude to him by name.

28. Experimental Proof of the Law of Refraction.—The
relation between the angles of incidence and refraction can

be very strikingly exhibited with the aid of the optical disk

that was mentioned in § 13 in connection with a lecture-

table experiment for verifying the law of reflection of light.

The vertical ground glass disk is adjusted in the track of

a narrow beam of sunlight (or parallel rays from a lantern)

in such a position that the path of the light is shown by a

band of light crossing the face of the disk along one of its

diameters. The glass body through which the light is re-

fracted has the form of a semicylinder, the two plane par-

allel sides being ground rough so as to be more or less opaque,

whereas the curved surface and the diametral plane face

are both highly polished. This half-disk has a radius of

about 2 inches and is about one-half inch thick or more. It

can be fastened against the vertical face of the optical disk

with its axis horizontal and coinciding with the axis of rotation

of the disk, as represented in the diagram Fig. 43. If this

adjustment is made, and the disk turned so that the inci-
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dent ray AB meets the polished plane face of the glass body

at its center B, the refracted ray BC will proceed through

the glass along a radius of the semicylinder, and therefore

meeting the curved surface normally, it will emerge again

into the air without being

further deviated. The di-

ameter NN' which is

marked on the face of the

optical disk is normal to

the plane surface of the

glass body, and if from the

points A and C where the

incident and refracted rays

cross the circumference of

the disk perpendiculars are
Fig. 43.—Optical Disk used to verify i , * -m ^_ ,1 «^«^„i

law of refraction.
let fal1 0n the normal

NN', the lengths of these

perpendiculars AX and CY will be proportional to the sines

of the angles of incidence and refraction NBA and N'BC,

respectievly. Now it will be found that, no matter how we
turn the disk, the perpendicular AX will always be about

one-and-a-half times as long as the perpendicular CY. If

we substitute for the half-disk of solid glass a hollow vessel

of the same form and size with thin glass walls, and if we fill

this vessel with water, we shall find now that the length of

the perpendicular AX will always be about one-and-one-

third times that of the perpendicular CY, because the relative

index of refraction from air to water is 4/3, as above stated.

But the best proof of the law of the refraction of fight

is to be found in the fact that this law is at the basis of the

theory and construction of nearly all optical instruments,

and it has been subjected, therefore, to the most searching

tests. The law of refraction may also be regarded as com-

pletely verified by the methods that are employed in the

determination of the indices of refraction of transparent

bodies, solid, liquid and gaseous; which are described in



§ 29] Reversibility of Light Path 69

treatises on experimental optics usually under the title of

"refractometry."

29. Reversibility of the Light Path.—When a ray of light

AB is reflected at B in the direction BD, a plane mirror

placed at D at right angles to BD will turn the reflected

ray back on itself; arriving again at B, the light will ob-

viously be reflected there so as to return finally to the point

A where it started. This is a simple instance of a general

law of optics known as the principle of the reversibility of

the light path. Experiment shows that the same rule holds

likewise in the case of the refraction of light, and that if

ABC is the route pursued by light in going from a point

A in one medium to a point C in an adjoining medium by
way of the incidence-point B, and if then the light is re-

versed by some means so as to be started back along the

path CB, it will be refracted at B into the first medium
along the path BA. And, in general, if the final direction

of the ray is reversed, for example, by falling normally on

a plane mirror, the light will retrace its entire path, no

matter how many reflections or refractions it may have

suffered. Thus, in any optical diagram, in which the di-

rections of the rays of light are indicated by arrow-heads,

these pointers may all be reversed, if we wish to ascertain

how the rays would go through the system if they were to

enter it from the other end.

It follows, therefore, since

sin a sin a'

sin a'
ab

' sin a ba '

that we have the relation

:

^ab-^ba = 1

;

that is, the relative indices of refraction from (a) to (b) and

from (b) to (a) are reciprocals of each other. Thus, for ex-

ample, since naw = 4/3 is the index from air to water, the

index from water to air is nwa = 3/4. Similarly, if ?iag= 3/2,

the index from glass to air is nga = 2/3.
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30. Limiting Values of the Index of Refraction.—Accord-

ingly, we see that the value of the relative index of refrac-

tion may be greater or less than unity. If nab>l, the

second medium (b) is said to be more highly refracting or

(optically) denser than the first medium (a); and since in

this case sin a >sina', it follows that a > a'', which means

that the refracted ray is bent towards the normal, as happens

when light is refracted from air to water (wab = 1.33). On
the other hand, if nab <l, the second medium (b) is said to

be less highly refracting or (optically) rarer than the first

medium (a), and now the angle of refraction (a') will be

greater than the angle of incidence (a), so that in this case

the refracted ray will be bent away from the normal, as, for

example, when light is refracted from water into air (nwa=
0.75). Glass is more highly refracting than water, and

diamond has the greatest light-bending power of all optical

media, the index of refraction from air to diamond being

about 2.5. The values of the constant nab for pairs of

media a, b that are available for optical purposes are com-

prised within comparatively narrow limits, say, between

1/2 and 2. In the exceptional case when nab =l, the angles

of incidence and refraction will be equal, and the rays pass

from a to b without change of direction. This is the reason

why a glass rod is invisible in oil of cedar. Sometimes ac-

cidental differences of refrangibility between two adjacent

layers of the same medium enable us to distinguish one

part of a transparent medium from another. Similarly,

also, the presence of air-bubbles in water or glass is made
manifest by the refractions that take place at the boundaries.

A fish swimming in water does not see the water around him,

but the phenomena of refraction may make him aware of the

existence of a different medium above the surface of the water.

31. Huygens's Construction of a Plane Wave Refracted

at a Plane Surface.—The straight lines AB and AD (Fig. 44)

show the traces in the plane of the diagram of the plane

wave-front advancing in the first medium (a) in the direc-
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tion BD and the plane refracting surface, respectively. The
disturbance is supposed to have just arrived, at the point A
of the- refracting plane, which from this moment (£ = 0)

becomes a new origin

from which secondary

hemispherical wavelets

are propagated into the

second medium (b) . Now
light is propagated with

different velocities in dif-

ferent media; thus, for

example, the velocity of

light in water is only

about three-fourths of

what it is in air and the

velocity in glass is about

two-thirds of the velocity

in air. Consequently,

when waves of light pass

from air into water or

glass, the part of the wave-front that is in the denser medium
advances more slowly than the part that is still in the air,

so that the direction of the wave-front is changed in passing

from one medium to another. Let the velocities of light

in the media a and b be denoted by va and v^, respectively.

Then after a time i= BD/ya , when the disturbance which

was at B has just arrived at D on the boundary between

the two media, the secondary wavelets which have been

spreading out from A as center will have been propagated

Fig. 44.

—

Huygens's construction of plane

wave refracted at plane surface.

in the second medium (6) to a distance AC M = --BD;

and, similarly, at the same instant from any intermediate

point Q lying on AD between A and D the disturbance will

have proceeded into the second medium (b) to a distance

QR=-(BD—PQ)=-KD,
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where K (not shown in the figure) designates the foot of

the perpendicular let fall from Q on BD. Thus, the radii

of the elementary cylindrical refracted waves whose axes are

perpendicular to the plane of the diagram at A and Q are

SfcD, "-bKD,

respectively; and, according to Huygens's principle, the

refracted wave-front at this instant will be the surface which

is tangent to all these elementary cylindrical surfaces. Ex-

actly the same method as was used in the similar problem

of reflection (§ 14) can be applied here; and thus it may be

shown that at the moment when the disturbance reaches

the point D of the plane refracting surface, the refracted

wave-front will be the plane CD containing this point, which

is perpendicular to the plane of the figure and tangent at C
to the elementary wave represented by the spherical sur-

face described about C as center with radius equal to AC.

In the first medium the wave marches forward in the di-

rection LA and in the second medium in the direction AC.

Snell's law of refraction (§ 27) may be deduced from

the figure by observing that BD = AD.sina, where a =

ZNAL = ZDAB denotes the angle of incidence, and AC =
AD.sin a', where a' = Z N'AC = ZADC denotes the angle of

refraction. Consequently,

sin a BD va
/
= ttt=— = a constant,

sin a' AC Vb

which constant must, therefore, be identical with the relative

index of refraction nab .

The diagram is drawn for the case when the light travels

faster in the first medium than it does in the second (va>vh),
that is, when the second medium is more retarding or "op-

tically denser" (§ 30) than the first.

32. Mechanical Illustration of the Refraction of a Plane

Wave.—A simple mechanical illustration of the refraction

of a plane wave at a plane surface may be devised as

follows

:
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Two boxwood wheels each about two inches in diameter

are connected by an iron axle about 4 inches long passing

through the centers of the wheels at right angles to their

planes of rotation (Fig. 45). If this body is placed on a

smooth rectangular board, about a yard long and about

18 inches wide, which is

slightly tilted, and allowed

to roll diagonally down the

board, its path will be

along a straight line. But
if a piece of felt cloth or

velveteen cut in the form

of a rectangle is glued in

the middle of the board,

with its long side parallel

to the edge of the board,

then when the body de-

scends the inclined plane

obliquely, one of the wheels

will arrive at the edge of FlG

the cloth before the other,

so that it will be suddenly slowed up while the other wheel

continues to move on the bare board under the same condi-

tions as before. Consequently, the axle will be made to swing

round until both wheels get on to the cloth piece, the direc-

tion of motion having been abruptly changed in this process.

At the opposite edge of the cloth rectangle, a similar change

of the direction of motion takes place in an opposite sense,

so that when the roller leaves the retarding surface and

emerges again on to the bare board, it will be found to be

going approximately in the same direction as at first. These

bendings in the course of the roller descending the inclined

plane at the places where it crosses the parallel sides of the

cloth rectangle are analogous to the deviations in the line

of march of a plane wave of light in traversing a glass slab

surrounded by air.

45.—Mechanical illustration

refraction.

of
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33. Absolute Index of Refraction.—If v& , vh and vc denote

the velocities of light in the media a, b and c, respectively,

then, as we have just seen (§ 31), according to the wave-

theory of light, the relative indices of refraction will be:

iti
naC~V nbc

"~Vc
;

and, hence, we find

:

nac.
nab=—-;

Wbc

so that in case we know the values nac , nbc of the indices

of a medium c with respect to each of the two media a and

b, the value nab of the index of medium b with respect to

medium a can be obtained at once by means of the above

relation. Moreover, since (§ 29)

1

Wbc

the preceding equation may be written as follows

:

Thus, for example, suppose the three media a, b and c are

water, glass and air, respectively; since nac= 3/4 and nch
=--

3/2, the index of refraction from water to glass is found by

the above formula to be nab = 9/8.

In fact, if there are a number of media a, &, c, . . . , i> j, h

it is obvious that we shall have the following relation be-

tween the relative indices of refractions:

nab-nbc . . . nij.njk = nak ,

which is easily remembered by observing the order in which

the letters occur in the subscripts. In particular, if the last

medium k is identical with the first medium a, as is the case

in an optical instrument surrounded by air, then nak= naa= 1,

and accordingly we obtain

:

^ab-^bc .... nij.nja = l.

A special case of this general relation, viz.,

has already been remarked (§ 29).
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Since wac.nca =7ibc.ncb = l and nab .n\iC = nac , we may write

also:

"'ca

and this formula suggests immediately the idea of employ-

ing some suitable medium c as a standard optical medium with

respect to which the indices of refraction of all other media

may be expressed. The natural medium to choose for this pur-

pose is the ether itself which light traverses in coming to the

earth from the sun and stars; and so the index of refraction of

a medium with respect to empty space or vacuum is called

its absolute index of refraction or simply its refractive index.

Thus, the absolute index of refraction of vacuum (c) is equal

to unity, that is, nc= l. Similarly, the symbols na , nh will

be employed to denote the absolute indices of the media

a, b, respectively; so that here they are really equivalent

to the magnitudes denoted by n CSL , nch in the preceding

formula, which, therefore, may be written

:

nh

that is, the relative index of refraction of medium b with respect

to medium a is equal to the ratio of the absolute index of medium
b to that of medium a.

The absolute indices of refraction of all known transparent

substances are greater than unity. The velocity of light

in ordinary atmospheric air is so nearly equal to its velocity

in vacuo that for all practical purposes we may generally

take the absolute index of refraction of air as also

equal to unity. The actual value for air at 0°C. and

under a pressure of 76 cm. of mercury, for sodium light,

is 1.000293.

With every isotropic medium there is associated, there-

fore, a certain numerical constant n called its (absolute)

index of refraction; and, hence, when a ray of light is re-

fracted from a medium of index n into another of index n f

,
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the trigonometric formula for the law of refraction may be

written thus:

sina n'

sina' n
which may also be put in the following symmetric form

:

n'.sina' = ft.sina.

This latter mode of writing this relation suggests also an-

other way of stating the fundamental fact in regard to the

Fig. 46.—Construction of refracted ray (n'>n)

refraction of light, as follows: Whenever a ray of light is re-

fracted from one medium to another , the product of the index

of refraction and the sine of the angle between the ray and the

normal to the refracting surface has the same value after re-

fraction (n'.sina/) as before refraction (n.sina). This prod-

uct K= n.sin a = n'.sina' which does not vary when the

light crosses a surface separating a pair of isotropic media

is called the optical invariant of refraction.

34. Construction of the Refracted Ray.—Let the absolute

indices of refraction of two media separated from each other

by a smooth refracting surface be denoted by n, n', and let

the straight line AB (Figs. 46 and 47) represent the path

in the first medium (n) of a ray incident on the boundary-
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surface at the point B. The straight line NN' represents

the normal to the refracting surface at this point, and hence

the plane of the diagram is the plane of incidence. The
straight line ZZ shows the trace in this plane of the plane

tangent to the refracting surface at the incidence-point B;

in the special case when the refracting surface is itself plane,

this straight line will be the trace of the surface of separa-

tion between the two media. With the point B as center

Fig. 47.—Construction of refracted ray (n'<n)

and with any radius r describe in the plane of incidence the

arc of a circle cutting the incident ray AB in a point P lying

in the first medium; and in the same plane, with radius

n'jn times as great, that is, with radius n'r/n, describe also

the arc of a concentric circle intersecting at P' the straight

line HP drawn through P perpendicular to ZZ at H. If

the second medium is more highly refracting than the first,

that is, if n'>n, the radius of the second circle will be greater

than that of the first, as represented in Fig. 46; whereas

when n'<n, the second circle is inside the first, as in Fig. 47.

The path of the refracted ray correspodinng to the given
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incident ray AB will be represented by the prolongation

BC in the second medium of the straight line P'B.

The proof of this construction consists simply in showing

that the ZN'BC between the normal and the straight line

BC is equal to the angle of refraction a' as given by the

formula n'.sin a' = n.sin a, where a=ZNBA denotes the

given angle of incidence. Evidently, from the figure, we have

:

sinZHPB _BP / _n'

sin/HP /B~BP "»'

and since ZHPB = ZNBA=a, and Z HP'B = Z N'BC, we
obtain immediately the relation: n'. sinZN'BC = ft.sina and

therefore ZN'BC=a'.
35. Deviation of the Refracted Ray.—The acute angle

through which the direction of the refracted ray has to be

turned to bring it into the same direction as that of the in-

cident ray is called the angle of deviation of the refracted ray

and is denoted by e; thus, € = ZP /BP (Figs. 46 and 47).

Obviously,

e= a— a'.

The only ray incident at B whose direction will remain un-

changed after the ray enters the second medium is the one

that proceeds along the normal NB (a = a'=e = 0). The
more obliquely the ray AB meets the refracting surface,

that is, the greater the angle of incidence, the greater also will

be the deviation-angle. The truth of this statement will be

apparent from an inspection of the relation between the

angles a and e as exhibited in Fig. 46 or Fig. 47. The inter-

cept PP' included between the circumferences of the two

construction-circles, which remains constantly parallel to the

incidence-normal, increases in length as the angle of inci-

dence increases, whereas the other two sides BP, BP' of

the triangle BPP', being always equal to the radii of the

circles, remain constant in length; and hence the angle €

must increase in absolute value as the angle a increases.

36. Total Reflection.—In ordinary refraction, as we have

seen, there can only be one refracted ray corresponding to
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a given incident ray, but the question may be asked: Is it

possible that, under certain circumstances, there will be

no refracted ray, so that the incident light will be totally

reflected at the surface without being refracted at all? Evi-

dently such will be the case whenever in the foregoing con-

struction (§ 34) the point P' (Figs. 46 and 47) cannot be

located, because the path of the refracted ray is determined

by the straight line P'B.

Let us examine, first, the case when the second medium
is more highly refracting than the first, n'>n (Fig. 46).

Fig. 48.—Limiting refracted ray (n
f
>ri)

Suppose that the straight line AB which represents the

path of the incident ray is initially in the position NB, and

that it is rotated from this position around the point B as

a pivot until it has turned through a right angle in the plane

of the figure. While the point P on AB describes a quadrant

of the circumference of the circle of radius BP, the point

P' will trace out an arc of the concentric circle of radius

BP', which, however, will never be equal to a quadrant of

this circumference; for when the point P has completed its

quadrant and arrived at the point D (Fig. 48) on the tan-

gent plane drawn to the refracting surface at B, the point
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P' will likewise have reached the extremity of its arc where

the tangent to the inner circle at D meets the circumference

of the outer circle. The incident ray ZB just grazes the re-

fracting surface at B or skims along it, and most of the

light is reflected and does not enter the second medium at

all, but the portion that is refracted pursues the path BQ
corresponding to this extreme position of the point P', and

this will be the outermost of all the refracted rays that

enter the second medium at the point B. The ZN'BQ=A
which is the greatest value that the angle of refraction can

have in the case when n'>n is called the limiting or critical

angle with respect to the two media. Since

sinZ N'BQ= sinZ PP'B =BD/BP'

=

n\n\

the magnitude of the angle A may be found from the rela-

tion:

sinA

=

n/n', (n <n f

) ;

which may likewise be derived by substituting the values

a = 90°, a/ =A in the refraction-formula. Thus, if the

first medium is air.(n = l) and the second medium is glass

(n' = 3/2), sinA = 2/3, so that the critical angle for air-glass

is found to be A =41° 49'. For air-water sinA = 3/4, A =
48° 35'; and, consequently, a ray of light whose path lies

partly in air and partly in water cannot possibly make
an angle with the normal in the water greater than about

48° 30'. For example, when a star is just rising or setting,

the rays coming from it will fall very nearly horizontally

on the surface of tranquil water and will be refracted into

the water, therefore, at an angle of approximately 48° 30'

with the vertical, so that if these rays entered an eye under

the water, the star would appear to be nearly halfway to

the zenith. In fact, all the rays coming into an eye placed

under water from the entire overhanging arch of the sky

would be comprised in the water within a cone whose axis

points to the zenith and whose angular aperture is about

97°. In this connection it is interesting and instructive to

examine a photograph of an air-scene made with a so-called
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"fish-eye" camera immersed below the level of a clear pool

of water, which affords some idea of how the world outside

the pond must look to a fish. Professor Wood, of the Johns

Hopkins University, has obtained a number of pictures of

this kind, some of which are reproduced in illustrations in

his very original book on Physical Optics, where also a brief

description of the essential features of the ingenious pin-

Fig. 49.—Limiting incident ray (n'<n)

hole camera which was used in making these pictures is

also given.

Accordingly, when light is refracted from a rarer to a

denser medium, there will always be a refracted ray cor-

responding to a given incident ray, because it is always

possible under these circumstances to locate the position

of the point P' opposite P, or, to express it in another way,

because when n<n r

there will always be a certain acute

angle a' that will satisfy the equation sina' = n.sina/tt' for

values of a comprised between 0° and 90°. But in the op-

posite case when, the first medium is denser than the second

(n>n f

), for example, when the light is refracted from water

to air, the statement just made is no longer true. The es-
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\ \
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diameter of the cork is (say) 6 inches and the head of

the pin is not more than 2.5 inches below the water-level

and vertically beneath the center of the cork, an eye placed

anywhere above the level of the water will be unable to see

the pin, because all the rays coming from it that meet the

surface of the water beyond the edge of the cork will be

totally reflected back into the water.

In Fig. 49 since sin ZNBP= sinZP'PB = BP'/BP, we find

in this case when n'<n that sinA = n'/n, which will also be

obtained by putting a = A, a' = 90° in the refraction-

formula n.sina = n /

.sina'. Comparing this result with

the formula sinA = n/n' obtained for the case when n'>n,

and recalling the fact that the sine of an angle is never

greater than unity, we may formulate the following rule:

The sine of the so-called

critical angle (A) with re-

spect to two media is the

ratio of the index of refrac-

tion of the rarer to that of

the denser medium. Or,

the sine of the critical angle

(A) of a substance is the

reciprocal of the absolute

index of refraction of the

substance: thus,

A-*

Fig. 52.—Optica Disk used to show total

reflection.

sinA = -.
n

37. Experimental Il-

lustrations of Total Re-

flection.—The phenomenon of total reflection may be ex-

hibited with the aid of the optical disk and the semicylinder

of glass described in § 28. If the disk is turned so that the

beam of incident parallel rays falls first on the curved surface

of the semicylinder, as shown in Fig. 52, the rays meet this

surface normally and proceed through the glass to the plane

face without being deviated. At the plane surface a por-
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tion of the beam is reflected and, in general, a portion is re-

fracted from glass to air. If the disk is turned until the

angle of incidence at the plane surface is just equal to the

critical angle (A), the rays emerging into the air will pro-

ceed along the plane face, and if the disk is turned a little

farther in the same sense, so that the angle of incidence

exceeds the critical angle, the light will be totally reflected.

An ingenious contrivance for exhibiting the procedure of

light in passing from water to air consists of a compara-

Fig. 53.—Demonstration of refraction from water to

air and total reflection.

tively large glass tank (Fig. 53) filled with water and pro-

vided with a plane vertical metallic screen the lower half of

which is under water while the upper half extends into the

air above. A cylindrical beam of light is directed horizon-

tally and normally against the lower part of the vertical

glass wall of the tank, which is behind the screen and par-

allel to it. The rays entering the water are received first

on the surface of a solid reflecting cone of aperture-angle

90° placed in the water under the screen and mostly in front

of it, the axis of the cone being horizontal and its apex

turned towards the on-coming light. From the surface of

this cone the rays are reflected through the water in all di-

rections in a vertical plane coinciding as nearly as possible

with the front side of the screen turned towards the spec-

tators. Surrounding the conical reflector and co-axial with
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it, there is a cylindrical cavity of diameter very little larger

than that of the base of the cone. The surface of this cylin-

der is made of thin sheet-metal blackened on the inside,

wherein a number of equal horizontal slits are cut at equal

angular distances apart, and through these slits narrow

beams of light reflected from the surface of the cone are

permitted to pass upwards towards the surface of the water,

their courses being shown by the bright traces on the screen.

Some of these beams will be refracted out into the air,

whereas others, meeting the water-surface more obliquely,

will be totally reflected.

If rays are incident normally on one of the two perpendic-

ular faces of a glass prism (§ 48) whose principal section is an

isosceles right-triangle (Fig. 54),

they will enter the prism with-

out deviation, and falling on
*~~

the hypothenuse-face at an angle z—^_

of 45°, which is greater than the

critical angle of glass, they will
*"~

be totally reflected there and

turned through a right angle, so

that they will emerge in a direc-

tion normal to the other of the two

perpendicular faces of the prism. FlG
-
54.—Total reflection prism

A prism of this kind is frequently employed in optical sys-

tems. It is used, for example, in connection with a photo-

graphic lens to rectify the image focused on the sensitive

plate of the camera, so that the right and left sides of the

negative will correspond to the right and left sides of the

object. None of the light is lost by the total reflection in

the prism, and if the prism is made of good optical glass

of high transparency there will be comparatively little loss

of light by absorption in the prism or by reflection on enter-

ing and leaving it. The same optical effect can be produced

by a simple plane mirror, but as a rule a polished metallic

surface absorbs the incident light to a considerable extent.
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However, the loss of light in the case of a mirror silvered

on glass is very slight; but on the other hand, the fine layer

of silver may easily be injured mechanically or tarnished

by exposure to the air. If the glass mirror is silvered on

the back side, the light will be reflected from both surfaces

of the glass and there will be confusion. Moreover, a glass

mirror may easily get broken or become dislocated in an

optical instrument; whereas a prism made of a solid piece

of glass is much more substantial and durable.

Optical prisms consisting of solid pieces of highly trans-

parent homogeneous glass with three or more polished plane

faces are very extensively used in the construction of modern

optical instruments for rectifying images which would other-

wise be inverted or for bending the rays of light into new
directions, etc. Usually the light undergoes several interior

reflections before it issues from the prism, and these reflec-

tions are often total reflections. If the reflection is not

total, it is best to silver the surface.

38. Generalization of the Laws of Reflection and Re-

fraction. Principle of Least Time (Fermat's Law).—The
laws of reflection and refraction, which merely describe the

observed effects when light falls on the common surface of

separation of two homogeneous media, and which are cap-

able of simple explanation on the basis of the wave-theory,

as has been illustrated in certain special cases (§§ 14 and 31),

may be combined into a general law which was first an-

nounced about 1665 by the French philosopher Fermat,

and which may be stated as follows: The actual "path pur-

sued by light in going from one point to another is the route

that, under the given conditions, requires the least time.

In case the reflections and refractions take place only

at plane surfaces, the truth of the above statement is

easily proved. Consider, first, the case when the light is re-

flected from a plane mirror. The straight line ZZ (Fig. 55)

represents the trace of the plane mirror in the plane of the

diagram, and A and C designate the positions of a pair of
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Fig. 56.—Quickest route

from A to C via

ABC.

to a certain other point C in the plowed ground. The

question is, Where should he cross the dividing line ZZ?

Of course, his shortest route would be along the straight

line from A to C which intersects ZZ
at the point marked E in the figure,

but unless the straight line AC hap-

pens to be perpendicular to ZZ this

will not be his quickest way. In-

stead of crossing at E, suppose he

selects a point F on ZZ which is a

little nearer to his objective at C;

then although the length FC in the

plowed ground is shorter than be-

fore, on the other hand the distance

path AF over the smooth ground is longer,

but on the whole we may assume that

the route AFC will take less time than the shortest route

AEC. But if the point of crossing ZZ is taken too far from

E, the advantage of the shorter dis-

tance in the rough ground will pres-

ently be more than offset by the

increasing length of the distance that

has to be traversed in the smooth

ground. Accordingly, there is a cer-

tain point B on ZZ such that the

time taken along the route ABC
will be the quickest of all routes.

Now we shall see that this is also the

very path that light would take if it

p j £ » , ^ Fig. 57.

—

Fermat's princi-
were refracted from A to C across ple of least time in case

ZZ, supposing that the ratio of the

velocities of light on the two sides

of ZZ were the same as the ratio of the velocities of walking

in the two parts of the field.

In the accompanying diagram (Fig. 57) the broken line

ABC represents the actual path of a ray of light from a

of refraction at plane

surface.
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point A in the first medium (n) to a point C on the other

side of the plane refracting surface ZZ in the second medium
(n

f

) ; so that if NBN' is the normal to the surface at B, then

by the law of refraction

:

sin/NBA _rt_v
sinZN'BA~n v''

where v, v' denote the speeds with which light travels in

the media n, n', respectively. The time taken to go over

the route ABC is

AB BCl
*~

v
+

v'
*

and we wish to show that this time t is less than the time

AD DC
v V

along any other route ADC, where D designates the posi-

tion of any point on ZZ different from the point B. Draw
DG, DH perpendicular to AB, BC, respectively; then, since

Z BDG = Z NBA, ZBDH = Z N'BC,
evidently we have:

sinZBDG GB v GB HB

Now
sinZBDH HB~V '

0r
v V

AB BC_AG+GB BC =AG HC.
v v' v v' v v'

'

and since AG<AD and HC<DC, therefore

/AB
,
BC\ /AD

,
DC\

(v+vj < \ir+ y)>
and hence the time via ABC is less than it would be via any

other route from A to C.

It should be remarked, however, that when the boundary-

surface between two media is curved, the time taken by
light to go from a point A across the surface to another point

C is not always a minimum. It may, indeed, be a maximum,
but it is always one or the other.

39. The Optical Length of the Light-path, and the Law
of Malus.—In the time t that light takes to go along the path
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ABC from a point A in one medium (n) to a point C in an

adjacent medium (n
f

) it would traverse in vacuo the distance

-="(
A
V
B+

B
T
C
).

where V denotes the velocity of light in vacuo. But by the

definition of the absolute index of refraction (§ 33), n = V/v,

n'=V/v'; and hence the

equivalent distance in

vacuo is

:

nJUB+n'JBC.
The optical length of the

path of a ray in a medium
Fig. 5S.-Optical|ngth of ray-path

ig defined tQ be ^ prod_

uct of the actual length (I)

of the ray-path by the index of the medium (n) that is, n. I.

Suppose, for example, that light traverses a series of media

wi, ri2, etc., as represented in Fig. 58; the total optical length

along a ray will be:
k =m

ni.li+rh.k+ +nm .Zm =2Jnk .Zk ;

k=l

where ?k denotes the actual length of the ray-path in the

fcth medium.

Now the wave-front at any instant due to a disturbance

emanating from a point-source is the surface which con-

tains all the farthest points to which the disturbance has

been propagated at that instant. Thus, the wave-surface

may be defined as the totality of all those points which are

reached in a given time by a disturbance originating at a point.

In a single isotropic medium the wave-surfaces, as we have

seen, will be concentric spheres described around the point-

source as center; but if the wave-front arrives at a reflect-

ing or refracting surface /*, at which the directions of the

so-called rays of light are changed, the form of the wave-

surface thereafter will, in general, no longer be spherical; and

even in those exceptional cases when the reflected or refracted

wave-front is spherical, the waves will spread out from
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a new center which is seldom identical with the original

center. The function 2nl has the same value for all ac-

tual ray-paths between one position of the wave-surface and

another position of it; so that when the form and position

of the wave-front and the paths of the rays at any instant

are known, the wave-front at any subsequent instant may
be constructed by laying off equal optical lengths along the

path of each ray.

A consequence of this definition of the wave-surface is

that the ray is always normal to the wave-surface (§7), as will

be evident from the following

reasoning. Suppose that the

straight line AB (Fig. 59) repre-

sents the path of a ray incident

on the refracting surface ZZ at

the point B, and that the straight

line BC represents the path of

the corresponding refracted ray.

Moreover, let the wave-SUrface FlG
- 59.—Law of Malus: Ray

. normal to wave-front.
which passes through the pomt

C be designated by <r. From the incidence-point B draw

any other straight line, as BD, meeting the wave-surface a
in the point D. Then by the principle of least time, the

route ABC is quicker, that is, optically shorter, than the

route ABD, because the natural or actual route between the

points A and D would not be by way of the incidence-point

B. Hence, the straight line BC must be shorter than BD,
and therefore BC is the shortest line that can be drawn from

the incidence-point B to the wave-surface a.

The same reasoning is applicable to all cases of reflection

and refraction, and hence we may make the following gen-

eral statement:

Rays of light meet the wave-surface normally; and, con-

versely, The system of surfaces which intersect at right angles

rays emanating originally from a point-source is a system of

wave-surfaces.

This law was published by Malus in 1808.
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PROBLEMS

1. (a) A ray is refracted from vacuum into a medium
whose index of refraction is\/2, the angle of incidence being

45°: find the angle of refraction.

(b) Find the angle of incidence of a ray which is re-

fracted at an angle of 30° from vacuum into a medium of

index equal to \/3.

(c) Find the relative index of refraction when the

angles of incidence and refraction are 30° and 60°, respec-

tively. Ans. (a) 30°; (b) 60°; (c) y/%: 3.

2. Assuming that the indices of refraction of air, water,

glass and diamond have the values 1, -|, f and -§, respec-

tively, calculate the angle of refraction in each of the

following cases:

(a) Refraction from air to glass, angle of incidence 40°;

(b) from air to water, angle of incidence 60°; (c) from air

to diamond, angle of incidence 75°; (d) from glass to water,

angle of incidence 30°; (e) from diamond to glass, angle of

incidence 36° 52' 11.6". Ans. (a) 25° 22' 26"; (6) 40° 30' 19";

(c) 22° 43' 44"; (d) 34° 13' 44"; (e) 90°.

3. The height of a cylindrical cup is 4 inches and its di-

ameter is 3 inches. A person looking over the rim can just

see a point on the opposite side 2.25 inches below the rim.

But when the cup is filled with water, looking in the same

direction as before, he can just see the point of the base

farthest from him. Find the index of refraction of water.

Ans. 4:3.

4. The index of a refracting sphere is\/3; it is surrounded

by air. A ray of light, entering the sphere at an angle of

incidence of 60° and passing over to the other side, is

there partly reflected and partly refracted. Show that the

reflected ray and the emergent ray are at right angles to

each other.

5. In the preceding problem, show that the reflected ray

will cross the sphere again and be refracted back into the
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air in a direction exactly opposite to that which the ray had

before it entered the sphere.

6. A straight line drawn through the center C of a spher-

ical refracting surface meets the surface in a point desig-

nated by A. If J, J' designate the points where an inci-

dent ray and the corresponding refracted ray intersect the

TL 71

straight line AC, and if CJ = — .AC, show that CJ'=— .AC,
n n'

where n, n' denote the indices of refraction of the first

and second media, respectively.

7. Construct the path of a ray refracted at a plane sur-

face. Draw diagrams for the cases when n' is greater and

less than n. Construct the critical angle in each figure.

8. The velocity of light in air is approximately 186000

miles per second. How fast does it travel in alcohol of

index 1.363? Ans.. Approximately, 136 460 miles per sec.

9. A fish is 8 feet below the surface of a pool of clear water.

A man shooting at the place where the fish appears to be

points his gun at an angle of 45°. Where will the bullet

cross the vertical line that passes through the fish? (Take

index of water as 1.33, and neglect any deflection of the

bullet caused by impact with the water.)

Ans. 3 feet above the fish.

10. Assuming that the velocity of light in air is

30 000 000 000 cm. per sec, calculate its velocity in water

and in glass.

11. Prove that nab = ncb : nac .

12. Show that the sine of the critical angle of an optical

medium is equal to the reciprocal of the absolute index of

refraction.

13. Assuming same values of the indices of refraction as

in problem No. 2, calculate the values of the critical angle

for each of the following pairs of media: (a) air and glass,

(b) air and water, (c) air and diamond.

Ans. (a) 41° 48' 40"; (b) 48° 35' 25"; (c) 23° 34' 41".

14. A 45° prism is used to turn a beam of light by total

internal reflection through a right angle. What must be
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the least possible value of the index of refraction of the

glass? Ans. \/2.

15. Show that when a ray of light passes from air into

a medium whose index of refraction is equal to\/2> the de-

viation cannot be greater than 45°.

16. The absolute index of refraction of a certain trans-

parent substance is -§. Show that a luminous point at the

center of a cube of this material cannot be seen by an

eye in the air outside, if at the center of each face of the

cube a circular piece of opaque paper is pasted whose radius

is equal to three-eighths of the edge of the cube.

17. What will be the greatest apparent zenith distance of

a star to an eye under water?

18. Explain why it is that it is not possible for a person

by merely opening his eyes under water to see distinctly

objects in the water around him or in the air above the

water; whereas, if he is provided with a diver's helmet with

a plate glass window in it, he will experience no difficulty

in distinguishing such objects clearly.

19. Rays of light are emitted upwards in all directions

from a luminous point at the bottom of a trough contain-

ing a layer of a transparent liquid 3 inches in depth and of

refractive index 1.25. Show that all rays which meet the

surface outside a certain circle whose center is vertically

above the point will be totally reflected; and find the radius

of this circle. Ans. 4 inches.

20. A pin with a white head is stuck perpendicularly in

the center of one side of a flat circular cork, and the cork

is floated on water with the pin downwards. Assuming

that the head of the pin is 2 inches below the surface of the

water, find the smallest diameter the cork can have so that

a person looking down through the water (index -|) from

the air above (index unity) could not see the head of the pin.

Ans. 4.535 inches.

21. Plot a curve showing the deviation e as a function

of the angle of incidence a for the case when the refraction

is from water (n = 4/3) to air (n
f = 1)

.
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REFRACTION AT A PLANE SURFACE, AND ALSO THROUGH A
PLATE WITH PLANE PARALLEL FACES

40. Trigonometric Calculation of Ray Refracted at a

Plane Surface.—A geometrical construction of the path of

the refracted ray was

given in § 34. The path

of a ray refracted at a

plane surface may also

be easily determined by

trigonometric calculation.

The straight line yy in

Figs. 60 and 61 represents

the plane refracting sur-

face Separating the two FlG - 60.-RefractioD.of ray at plane sur-
1

, .

& face: a= AL, v =AL (n >n).
media of indices n, n',

and the straight line LB shows the path of a ray which is in-

cident on yy at the point marked B. The straight line LA
perpendicular to yy at A
is the axis of the refract-

ing plane with respect

to the position of the

point L. The magni-

tudes ?; =AL a =
Z ALB which determine

completely the position
Fig. 61.—Refraction of ray at plane surface: q£ ^\q incident rav are

v= AL, v =AL' (n'<n). J

sometimes called the
ray-coordinates. Let L' designate the point where the re-

fracted ray L'B intersects the axis xx, and let z/ = AL',

a' = Z AL'B denote the coordinates of the refracted ray. The

95
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problem is: Given the incident ray (v, a), determine the re-

fracted ray (*/, a').

From either diagram we obtain immediately the relation:

z/_tan a

v "tana"

and since n.sma = n'.sma', we obtain finally the following

formulae for calculating the refracted ray:

v V?
n cos a

??
2.sm 2 a . , n .

-, sin a =— .sin a.
n'

Now if the point L is a luminous point, rays will emanate

from it in all directions, and, whereas the magnitude v will

remain the same for all these

rays, the angle a will vary from

ray to ray. But for different

values of a, in general we shall

obtain different values of the

magnitude v', and, consequently,

the position of the* point 1/ on

the axis will be different for dif-

ferent incident rays coming from

L. Accordingly, the bundle of
Fig. 62.—Refraction of paraxial refracted rays corresponding to

rays at plane surface: u= ,
.

"

a homocentnc bundle of mcidentAM, w'= AM'
(n'>n).

u : n =u:n,

rays will not be homocentric.

41. Imagery in a Plane Refracting Surface by Rays
which Meet the Surface Nearly Normally.—The more
or less blurred and distorted appearance of objects seen

under water is familiar to everybody. When the rays

that enter the eye meet the surface of the water very

obliquely, the distortion is almost grotesque. If the pupil

of the eye were not comparatively small, it would indeed

be practically almost impossible to recognize an object under

water, even if the eye were placed in the most favorable

position vertically over the object. It is only because the

apertures of the bundles of effective rays that enter the eye
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are quite narrow, that there is any true image-effect at all

in the case of refraction at a plane surface.

When the eye looks directly along the normal to the

plane refracting surface at an object-point M on the other

side of the surface (Figs. 62 and

63), the effective rays coming

from M will meet the surface

very nearly perpendicularly,

and the incidence-points will

all be so close to the point A
that there will be practically no

difference between the lengths

of the straight lines MA and

MB, and accordingly under

these circumstances we may
write sin a in place of tan a.

Similarly, also, with respect to

the refracted ray, sin a' can be substituted here for tan a/.

And if in this case we put KM = u, AM ,= ii', where M, M'
designate the points where a ray which is very nearly nor-

mal to the refracting plane crosses the normal before and

after refraction, we have therefore,

Fig. 63.—Refraction of paraxial

rays at plane surface: m= AM,
u'= AM', u' : n' = u:n

, (n'<n).

tan a sin a

u tan a' sin a'

and, hence, by the law of refraction

:

n' n . n'— —-
, or u = —.u.

u' u n

The angle a has disappeared entirely from this formula, and

the value of v! may be found as soon as the value of u is given.

This means that corresponding to a given position of the

object-point M there is a perfectly definite image-point M',

and the points M, M' are said to be a pair of conjugate points.

Accordingly, when a narrow bundle of homocentric rays is

incident nearly normally on a refracting plane, the correspond-

ing bundle of refracted rays will be homocentric also. And if
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the aperture of the bundle is infinitely narrow, the imagery

will be ideal.

For example, a pebble at the bottom of a pool of water

12 inches deep will be seen distinctly from a point in the air

vertically above it, but it will appear to be only 9 inches

below the surface of the water, since n'/w= 3/4. On the other

hand, an object 9 inches above the surface will seem to be

12 inches above it to an eye in

the water vertically beneath the

object, beca-use in this case

n'/n= 4/3.

42. Image of a Point Formed

by Rays that are Obliquely Re-

fracted at a Plane Surface.—
But if the bundle of rays com-

ing from the luminous point S

(Fig. 64) is a wide-angle bundle

of considerable aperture, no dis-

Fig. 64,-Caustic by refraction at
tinct imaSe wil1 be formed b^

plane surface from water to these rays after refraction at a
air '

plane, but the points of inter-

section of the refracted rays will be spread over a so-

called caustic surface, which in this case is a surface of

revolution around the normal SA drawn from S to the re-

fracting plane. The figure shows a meridian section of this

surface for the case when the rays are refracted from a

denser to a rarer medium (n'< n), the curve in this case being

the evolute of an ellipse. Each refracted ray produced back-

wards touches the caustic surface. The cusp of the meridian

curve is on the normal SA at the point M' where the image of

S is formed by rays that meet the refracting plane nearly per-

pendicularly, as explained in the preceding section. Wherever

the eye is placed in the second medium, only a narrow

bundle of rays coming from S can enter it through the pupil

of the eye. The nearest approach to an image of the source

at S as seen by rays that are refracted more or less obliquely



§ 42] Caustic Surface 99

will be the little element of the caustic surface which is the

assemblage of the points where the effective rays that enter

the eye touch this surface. Thus, rays entering the eye at E
appear to come from the point S' where the tangent from E
touches the caustic. It is evident now why an object S under

WATER

Fig. 65.—Rod partly immersed in water appears to be bent
upwards.

water appears to be raised towards the surface and at the

same time also to be shifted towards the spectator more and

more as the eye at E is brought nearer to the surface of the

water, until finally when the eye is on a level with the surface

of the water, the image of S appears now to be at V on the

refracting plane. Rays from S that meet the surface beyond

this limiting point V where the caustic curve is tangent to

the straight line ZZ will be totally reflected. The image of S

seen by the eye at E is blurred and distorted, because

the image-point S' is the point of intersection of a very

limited portion of the bundle of refracted rays that enter

the eye.

The above explanation makes it clear why a straight line

ABC (Fig. 65) which is partly in air and partly in water will

appear to an eye at E to be bent at B into the broken line

ABC'. The image BC of the part BC under water can be

plotted point by point for any position of the eye.
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43. The Image-lines of a Narrow Bundle of Rays Re-

fracted Obliquely at a Plane.—The diagram (Fig. 66) shows

the paths of two rays SBD and SCE which originating at S

and falling on the refracting plane ZZ at the points B and C
are refracted in the directions CE and BD into the eye of an

observer. The refracted rays produced backwards intersect

at S' and cross the normal

SA at the points marked

WandV. Evidently, all

the rays from S that fall

on the refracting plane at

points between B and C
will, after refraction, in-

tersect SA at points be-

tween V and W. Sup-

pose that the figure is

Fig. 66.—Oblique refraction at plane sur- revolved around SA as
face (n'<n). ^ then each my ^yj

generate a conical surface, and the vertices of these cones will

be at the points S, V, and W for the rays that are actually

drawn in the diagram. The bundle of rays that enter the eye

at DE will be a small portion of the refracted rays that are

contained between the conical surfaces whose vertices are

at V and W. These conical surfaces intersect each other in

the circle which is described by the point S' when the figure

is rotated around the axis SA, and it is a little element of

arc of this circle perpendicular to the plane of the diagram

at S' that contains the points of intersection of the rays that

enter the eye. This is called the primary image-line (§188) of

the narrow bundle of refracted rays. There is another

image line at V called the secondary image-line, which lies in

the plane of the paper, and which is generally taken as per-

pendicular to the axis of the bundle of refracted rays, though

sometimes it is considered as the segment VW of the axis

of revolution. But these are intricate matters that can be

only alluded to in this place. (See Chapter XV.)
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44. Path of a Ray Refracted Through a Slab with Plane

Parallel Sides.—When a ray of light traverses several media
in succession, then

ui . sin ai = rbi . sin a/, n^ . sin a2 = n3 . sin a2
'

', etc.

,

where nh n^, n3 , etc., denote the indices of refraction of the

media, and ah oi'; a2 , 02'; etc., denote the angles of incidence

and refraction at the various surfaces of separation. In the

Fig. 67.—Path of ray refracted through plate with plane parallel sides.

special case when these refracting surfaces are a series of

parallel planes, the angle of incidence at one plane will be

equal to the angle of refraction at the preceding plane

(

a

k +i
= a/, where the integer k denotes the number of the

plane).

The simplest case of this kind occurs when there are only

two parallel refracting planes, and when the last medium is
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the same as the first, as, for example, in the case of a slab

of glass bounded by plane parallel sides and surrounded by
air, as represented in Fig. 67. Then

n<i = ni = n, ri2 = n',

and ai=a 2 =a'.
Accordingly, we have the following pair of equations:

n . sin ai = n' . sin a f

, n' . sin a'= n . sin a2
f

;

and, therefore:

0.2 — CLi = a;

which means that the ray emerges from the slab in the same
direction as it entered it. Thus, when a ray of light traverses

a slab with plane parallel sides which is bounded by the same
medium on both sides, the emergent ray will be parallel to the

incident ray. Obviously, this statement may be amplified

as follows: When a ray of light traverses a series of media each

separated from the next by one of a series of parallel refracting

planes, the final and original directions of the ray will be

parallel, provided the first and last media have the same index

of refraction.

The only effect of the interposition of the glass plate

(Fig. 67) in the path of the ray is to shift the path to one

side without altering the direction of the ray. It might be
inferred, therefore, that the apparent position of an object

as seen through such a plate of glass would not be altered,

but this is not true in general, as we shall proceed to explain.

Every ray that traverses the plate will be found to be dis-

placed at right angles to its original position through a dis-

tance

sin(a-aO
cos a'

'

where d denotes the thickness of the plate. Since

\/n' 2 -n2.sin 2 a
cos a =

,

n'

the formula above may be put also in the following form

:

"R t>_ sma (~\/^ /2 -^ 2sin 2 a-n.cosa ) ,

\/V2 -ft 2.sin 2 a
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Accordingly, the shift B2D varies with the slope of the in-

cident ray. If the object is very far away, the rays that

enter the eye will be parallel, so that the apparent position

of a distant object will not be altered in the slightest by view-

ing it through a plate of glass with plane parallel sides, no

matter what may be the angle of incidence of the rays, and

consequently the plate may be turned to the rays at dif-

0&^

^k*

Fig. 68.—Apparent position of object seen through plate with
plane parallel sides

ferent angles without producing any change in the appear-

ance of the object as seen through it. But if the object-

point S (Fig. 68) is near at hand, an eye at E will see it in

the direction ES, but when the glass is interposed, it will

appear to lie in the direction ES' which is sensibly different

from ES, and this difference can be increased or diminished

by rotating the plate around an axis perpendicular to the

plane of the figure. This principle is utilized very ingeniously

in the original form of ophthalmometer designed by Helm-
holtz (1821-1894) for measuring the curvatures of the re-

fracting surfaces of the eye. It is employed also in an instru-

ment for measuring the diameter of a microscopic object,

which Professor Poynting has called the " parallel plate mi-

crometer" (see Proc. Opt. Convention, London, 1905, p. 79).
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45. Segments of a Straight Line.—The finite portion of

a straight line included between two points is called a segment

of the line, while each of the other two parts of the line is to

be regarded as a prolongation of the segment. Considered

as generated by the motion of a point along a straight line

from a starting-point or origin A to an end-point or terminus

A& B, the segment AB is

_ g frequently spoken of also

< bZ m as the step from A to B
Fig. 60.—Segments of a straight line: Or the Step AB. The

AB = -ba. order of naming the two

capital letters placed at the ends of a segment describes

the sense of the motion or the direction of the segment. Thus,

with respect to direction the step BA (Fig. 69) is exactly the

reverse of the step AB.

Two steps AB and CD are said to be congruent, that is,

AB = CD,
provided these steps are not only equal in length but ex-

ecuted in the same sense.

If A, B, C are three points ranged along a straight line in

any order, that is, if AB and CD are two steps along the same

straight line such that the end of one step is the starting

point of the other, then the step AC is said to be equal to

the sum of the steps AB and BC; thus,

AB+BC = AC;
and hence also

:

AB =AC-BC, BC =AC-AB.
Moreover, if we suppose that the point C is identical with

the point A, it follows that

AB+BA =0orAB= -BA.

Thus, if one of the two directions along a straight line is

regarded as the positive direction, the opposite direction is

to be reckoned as negative. For example, if the distance

between A and B is equal to 12 linear units, and if we put

AB= +12, thenBA= -12.
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Similarly, also, we may write:

AB+BC+CA = 0;

or if X designates the position of any fourth point on the

straight line, then

AB+BC+CX = AX.

These ideas will be found to be of great service in treating

a certain class of problems in geometrical optics; and an

application of this method of adding line-segments occurs

in the following section.

46. Apparent Position of an object seen through a

transparent Slab whose Parallel Sides are perpendicular

to the Line of Sight.—In

Fig. 70 the line of sight

joining the object-point

Mi with the spectator's

eye at E is perpendicular

at Ai and A2 to the paral-

lel faces of the transpar-

ent slab, and all the rays

that enter the eye will

pass through the slab

close to this axial line.

Inside the slab they will proceed as if they had originated at

a point Mi' on the line of sight, but being again refracted,

they will emerge into the surrounding medium as if they had

come from a point M 2 ', which is the apparent position of the

object-point as seen by rays that are very nearly perpen-

dicular to the faces of the slab. If n, n' denote the indices

of refraction of the two media, then, according to §§ 41 and

45, we may write the following equations:

n
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Hence, the apparent displacement of the object is:

MiM2
' = MiAi+AiA2+A2M2

'

77

= MiA 1+A 1A2+-A2M 1
/

lb

77

=M 1A1+A 1A2+- (A2A 1+A 1M 1
')

lb

=M 1A 1+A1A2(l-^)+A 1M 1=^A IA2 ;
lb lb

accordingly, if the thickness of the plate is denoted by

d =AiA2 ,

MlM2
'=^d.

Thus, we see that the apparent displacement in the line of

sight depends only on the thickness of the plate and on the

relative index of refraction (V: n), and is entirely independent

of the distance of the object-point from the slab. Hence,

also, the size of the image of a small object viewed directly

through a glass plate is the same as that of the object, but

its apparent size will be different, because since the image

and object are at different distances from the eye, the angles

which they subtend will be different.

An object viewed perpendicularly through a glass plate

surrounded by air (n
r

: n = 3 : 2) will appear to be one-third

the thickness of the plate nearer the eye than it really is.

If the displacement of the object is denoted by x, that is,

if we put MiM'2 = x, then

n'_ d

n d-x'

This relation has been utilized in a method of determining

the relative index of refraction {n'\ n). A microscope S

pointed vertically downwards is focused on a fine scratch

or object-point O. A plate of the material whose index

is to be determined is then inserted horizontally between

the object and the objective of the microscope. The inter-

position of the plate necessitates a re-focusing of the micro-

scope in order to see the object distinctly, which will
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now appear to be at a point 0' nearer the microscope by

the distance # = 00'. This distance x is easily ascertained

in terms of the distance through which the objective of the

microscope has to be raised in order to obtain a distinct image

of the object. The thickness of the plate is easily measured,

and, consequently, we
have all the data for de-

termining the value of

n'jn. This method is

especially convenient for

obtaining the index of

refraction of a liquid

(Fig. 71).

47. Multiple Images

in th e two Parallel Faces

of a plate glass Mir-

ror.—An object is repro-

duced in a metallic mir-

Fig. 71.- -Measurement of index of refrac-

tion of a liquid.

ror by a single image, but in a glass mirror which is silvered

on the back side there will be a series of images of an object

in front of the glass, which may be readily seen by looking a

little obliquely at the reflection of a candle-flame in an or-

dinary looking glass. The first image will be comparatively

faint, the second one the brightest and most distinct of all,

and behind these two principal images other images more

or less shadowy may also be discerned whose intensities

diminish rapidly until they fade from view entirely. These

multiple images by reflection may also be seen in a trans-

parent block of glass with plane parallel sides.

The light falling on the first surface is partly reflected and

partly refracted. It is this reflected portion that gives rise

to the first image of the series. The rays that are refracted

across the plate will be partly reflected at the second face,

and, returning to the first face, a portion of this light will be

refracted back into the air and give rise to the second image

of the series; while the other portion of the light will be re-
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fleeted back into the glass to be again reflected at the back
face, and so on. In the diagram (Fig. 72) the source of the
light is supposed to be at the point marked S, and the straight

Fig. 72.—Multiple images by reflection from
the two parallel faces of a plate of glass.

line drawn from S perpendicular to the parallel faces of the

glass slab meets these faces in the points marked Ai and A2 .

The path of one of the rays coming from S is indicated in
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the figure, and it can be seen how it zigzags back and forth

between the two sides of the slab, becoming feebler and

feebler in intensity at each reflection. We consider here only

such rays from S as meet the surface very nearly normally.

The series of images of S will be formed at S', S", S"', etc.,

all lying on the prolongation of the normal SAiA2 , and it is

because these images are all ranged in a row one behind the

other, that ordinarily when we look in a mirror we do not see

the images separated.

The reflected ray 1 proceeds as if it had come from S', the

position of this point being determined by the relation A]S'=

SAi. But the refracted ray crosses the slab as if it had come
from the point T, the position of which is determined by the

relation TAi= n.SAi, where n denotes the index of refraction

of the glass (the other medium being assumed to be air of

index unity). Arriving at the second face, this ray will be

reflected as if it had come from a point U such that A2U =
TA2 . Returning to the first surface, it will be partly re-

fracted out into the air as the ray marked 2 proceeding as

if it came from the second image-point S", the position of

which is determined by the relation AiS" = AiU/n; and also

partly reflected as if it had come from a point V such that

VAi = AiU. The ray is reflected a second time at the second

face, as if it came from the point W, where A2W= VA2 ; and

being once more refracted at the first face, emerges into the

air as the ray marked 3, appearing now to come from the

image-point marked S'" determined by the relation AiS'" =

AiW/n.

What is the interval between one image and the next?

For example, let us try to obtain an expression for the inter-

val S"S'". This may be done as follows:

S"S'" = S"Ai+AiS'";

AiS"' = AiW/n= (AiA2+A2W)/n= (AiA2+VA2)/n

= (A!A2+VAi+AiA2)/tt= (AiU+2AiA2)/n

= AiS"+2d/n;
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where d =AiA2 denotes the thickness of the glass plate.

Hence, we find

:

n

'

It appears, therefore, that the distance between one image

2
and the next is constant and equal to - times the thickness

of the plate. Thus, for a glass plate for which n = 3/2 the

distance from one image to the next is equal to 4/3 the thick-

ness of the plate.

PROBLEMS

1. A ray of light traverses in succession a series of isotropic

media bounded by parallel planes, and emerges finally into

a medium with the same index of refraction as that of the

first medium. Show that the final path of the ray is parallel

to its original direction.

2. Construct accurately the paths of six rays proceeding

from a point below the horizontal surface of water and re-

fracted into air; and show where the object-point will appear

to be as seen by an eye above the surface of the water, for

three different positions of the eye.

3. Why does the part of a stick obliquely immersed in

water appear to be bent up towards the surface of the water?

Explain clearly.

4. Derive the formula —, = - for the refraction of paraxial
u u

rays (§63) at a plane surface.

5. A ray of light incident on a plane refracting surface at

an angle a crosses a straight line drawn perpendicular to the

surface at a distance v from this surface. How far from the

surface does the refracted ray cross this line?

6. If a bird is 36 feet above the surface of a pond, how high

does it look to a diver who is under the water? What is the

apparent depth of a pool of water 8 feet deep?

Ans. 48 feet above the surface; 6 feet.
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7. What will be the effect on the apparent distance of an

object if a slab of transparent material with plane parallel

sides is interposed at right angles to the line of vision?

Ans. It will appear to be nearer the eye by the amount
(n— I) jd, where d denotes the thickness of the slab and n de-

notes the index of refraction of the material.

8. A cube of glass of index of refraction 1.6 is placed on a

fiat, horizontal picture; where does the picture appear to be

to an eye looking perpendicularly down on it?

Ans. It will appear to be raised three-eighths of the thick-

ness of the cube.

9. A microscope is placed vertically above a small vessel

and focused on a mark on the base of the vessel. A layer of

transparent liquid of depth d is poured in the vessel, and then

it is found that the image of the mark has been displaced

through a distance x which is determined by re-focusing the

microscope. Show that the index of refraction of the liquid

is equal to d/(d — x).

10. In an actual experiment made by the above method to

determine the index of refraction of alcohol, the depth of the

liquid was 4 cm., and the displacement of the image was

found to be 1.06 cm. What value was found for the index of

alcohol? Ans. 1.36.

11. A candle is observed through a tank of water with

vertical plane glass walls. The line of sight is perpendicular

to the sides of the tank, the candle being 15 cm. from one

side and 39 cm. from the opposite side. What is the apparent

position of the candle? (Neglect the effect of the thin glass

walls.) Ans. It appears to be 9 cm. from the near side.

12. If an object viewed normally through a plate of glass

with plane parallel faces seems to be five-sixths of an inch

nearer than it really is, how thick is the glass?

Ans. 2.5 inches.

13. A layer of ether 2 cm. deep floats on a layer of water

3 cm. deep. What is the apparent distance of the bottom of
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the vessel below the free surface of the ether? (Take index of

refraction of water =1.33 and of ether= 1.36.)

Ans. 3.73 cm.

14. A person looks perpendicularly into a mirror made
of plate glass of thickness one-half inch silvered on the back.

If his eye is at a distance of 15 inches from the front face,

where will his image appear to be?

Ans. 15
2
/3 inches from the front face.

15. When a stick is partly immersed in a transparent

liquid of index n at an angle 6 with the free horizontal sur-

face, what is the angle 6
' which the part of the stick below

the surface appears to make with the horizon as seen by an

eye looking vertically down on it from the air above the

liquid?

tan0
Ans. tancr = .



CHAPTER V

REFRACTION THROUGH A PRISM

48. Definitions, etc.—An optical prism is a limited portion

of a highly transparent substance with polished plane faces

where the light is reflected or refracted. Prisms in a

great variety of geometrical forms and combinations are

employed in many types of modern optical instruments (cf.

§§ 20, 37) ; but in this chapter the term prism will be re-

stricted to mean a portion of a transparent, isotropic sub-

stance included between two polished plane faces that are

not parallel. The straight line in which the planes of the

two faces meet is called the edge of the prism, and the di-

hedral angle between these planes is called the refracting angle.

This angle, which will be denoted by the symbol /3, may be

more precisely defined as the convex angle through which the

first face of the prism has to be turned around the edge of the

prism as axis in order to bring this face into coincidence with

the second face. The first face of the prism is that side where

the rays enter and the second face is the side from which the

rays emerge. Every section made by a plane perpendicular

to the edge of the prism is a principal section, and we shall

consider only such rays as traverse the prism in a principal

section, not only because the problem of oblique refraction

through a prism presents some difficulties which are beyond

the scope of this volume, but especially because in actual

practice the principal rays are usually confined to a principal

section of the prism. It will also be assumed, for simplicity,

that the prism is surrounded by the same medium on both

sides.

I. Geometrical Investigation

49. Construction of Path of a Ray Through a Prism.—
The plane of the diagram (Fig. 73) represents the principal

113
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section of a prism whose edge meets this plane perpendicu-

larly at the point marked V. The traces of the two plane

faces are shown by the straight lines ZiV, Z2V intersecting at

V. The straight line ABi represents the path of the given

incident ray lying in the plane of the principal section and

Fig. 73.—Construction of path of ray through principal section

of prism (n'>n).

falling on the first face of the prism at the incidence-point Bi.

The problem of constructing the path of the ray both within

the prism and after emergence from it is solved by a method

essentially the same as that employed in § 34.

Let n denote the index of refraction of the medium sur-

rounding the prism and n' the index of refraction of the prism-

medium itself. With the point V as center, and with radii

equal to r and — .r, where the radius r may have any con-

venient length, describe the arcs of two concentric circles both

lying within the angle Z2VE, where E designates a point on

the prolongation of the straight line ZiV beyond V. Through
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V draw a straight line VG parallel to ABi meeting the arc

of radius nr/n' in the point designated by G; and through

the point G draw a straight line GE perpendicular at E to

the first face of the prism (produced if necessary), and let H
designate the point where the straight line GE (likewise

produced if necessary) meets the circumference of the other

of the two circular arcs. Then the straight line BiB 2 drawn

parallel to the straight line VH will represent the path of

the ray within the prism. For if the straight line NiN/ is the

incidence-normal to the first face of the prism at the point

Bi, and if the angles of incidence and refraction at this face

are denoted by ai = ZNiB iA,ai
,= ZNi /BiB 2 , then by the

law of refraction

:

n.sinai = n'.sinai'.-

But by the construction :

sinZEGV VH n'

sinZEHVVG-n'
and since Z EGV= Z NiBiA = ai, it follows that Z EHV= a/;

and hence the path of the ray within the prism must be

parallel to VH.
Again, from the point H let fall a perpendicular HF on

the second face of the prism, where F designates the foot of

this perpendicular; and let J designate the point where HF
intersects the arc of radius nr/n'. Then the straight line

B 2C drawn from the incidence-point B 2 parallel to the straight

line VJ will represent the path of the emergent ray. For if

we draw N2N2
' perpendicular to the second face of the prism

at B2 , and if the angles of incidence and refraction at this

face are denoted by a2 = ZN2B 2Bi, a2
' = ZN2'B2C, re-

spectively, then n' . sin a2 = n . sin a2
'. But

sinZFJV VH n'

sinZFHV" VJ~n'

and since by construction ZFHV= a2 , it follows that

ZFJV= a2 ', and hence the path of the emergent ray will

be parallel to VJ.
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The diagram (Fig. 73) is drawn for the case when n f>n, as

in the ordinary case of a glass prism surrounded by air. The

student should draw also a diagram for the other case when

n'<n, showing the procedure of a ray through a prism of less

highly refracting substance than that of the surrounding

medium, for example, an air prism surrounded by glass, such

as is formed by the air-space between two separated glass

prisms.

50. The Deviation of a Ray by a Prism.—The total de-

viation of a ray refracted through a prism, which is equal to

the algebraic sum of the deviations produced by the two

refractions (§35), may be defined as the angle e= ei~\r e2

through which the direction of the emergent ray must be

turned in order to bring it into the direction of the incident

ray; thus, in Fig. 73, e = ZJVG; and if the angle e is meas-

ured in radians, the arc JG = e . JV. In order to specify

completely an angular displacement, it is necessary to give

not only the magnitude of the angle and the sense of rotation

of the radius vector, but also the plane in which the displace-

ment occurs. This plane may be specified by giving the

direction of a line perpendicular to it, which in the case of

the angle here under consideration may be the edge of the

prism or any line parallel to it; because any such line will

be perpendicular to the principal section of the prism in

which the ray lies. In fact, the angle e may be completely

represented in a diagram by a straight line drawn parallel

to the edge of the prism, which by its length indicates the

magnitude of the angle and by its direction shows the sense

of rotation. Thus, for example, the line may be drawn along

the edge of the prism itself from a point V in the plane of the

principal section and always in such a direction that on

looking along the line towards that plane Z JVG = e will

be seen to be a counter-clockwise rotation. A deviation of

20° in a principal section coinciding, say, with the plane of

the paper would be represented, therefore, by a straight line

perpendicular to this plane of length 20 cm., if each degree
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were to be represented by one centimeter. If e= +20°, this

line would point out from the paper towards the reader, and

if € = -20°, it would point away from him. Thus, if the

prism, originally "base down," is turned "base up" (as the

opticians say), everything else remaining the same, the sign

of the angle e will be reversed, and so also will be the direc-

tion of the vector which represents this angle.

51. Grazing Incidence and Grazing Emergence.—The
angle GHJ between the normals to the two faces of the prism

is equal to the refracting angle (3; and hence for a given prism

this angle will remain always constant. No matter how the

direction of the incident ray ABi (or VG) may be varied,

the vertex H of this angle will lie always on a certain portion

of the circumference of the construction-circle of radius r,

and the sides HG, HJ will remain always in the same fixed

directions perpendicular to the faces of the prism. Obviously,

there will be two extreme or limiting positions of the point H
marking the ends of the arc on which it is confined, namely,

the positions winch H has when one of the sides of the angle

GHJ is tangent to the circle of radius nrjn'; which can occur

only for the case when n'>n, because otherwise the point H
will lie inside the circumference of this circle and therefore

it will be impossible for either HG or HJ to be tangent to it.

If the side HG is tangent to the inner circle at G, as shown

in Fig. 74, the point G will lie in the plane of the first face

of the prism, and accordingly the corresponding ray incident

on the first face of the prism at the point Bi, which must

have the direction VG, will be the ray ZiBi which, entering

the prism at "grazing" incidence (ai = 90°), traverses the

prism as shown in the figure.

On the other hand, when the side HJ of the angle GHJ is

tangent at J to the construction-circle of radius nr\n' (Fig. 75),

the point J will lie in the second face of the prism, and the

straight line VJ will coincide with the straight line VZ2 .

Under these circumstances the ray emerges from the prism at

B2 along the second face in the direction B 2Z2(a 2
/'= -90°).
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The straight line KB X shows the path of the ray incident on

the first face of the prism at Bi which " grazes" the second

face on emerging from the prism. Any ray incident at Bi and

lying in the principal section of the prism within the angle

KB1Z1 will succeed in getting through the prism and emerging

Fig. 74.—Case when ray "grazes" first face of prism.

into the surrounding medium again; whereas if the ray in-

cident at Bi lies anywhere within the angle VBiK, it will

be totally reflected at the second face of the prism. The

ray KBi is called the limiting incident ray and ZNiBiK= t

is the limiting angle of incidence. These relations will be

discussed more fully in the analytical investigation of the

path of a ray through a prism (§§ 55, foil.) ; but it may be

remarked that ZGHV= a/ in Fig. 74 and ZJHV= a2 in

Fig. 75 are both equal to the critical angle A (§ 36) with

respect to the two media n, n' (sinA=n/n').
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52. Minimum Deviation.—Between the two extreme or

terminal positions of the vertex H of ZGHJ shown in

Figs. 74 and 75, there is also an intermediate place which is

of special interest and importance and to which, therefore,

attention must be called. In general, the sides HG, HJ inter-

Fig. 75.—Case when ray "grazes" second face of prism.

cepted between the two construction-circles (Fig. 73) will

be unequal in length, but if HG =HJ, as in Fig. 76, the angles

GVJ, GHJ and EVF will evidently all be bisected by the

diagonal VH of the quadrangle VGHJ. When this happens,

the path BiB 2 of the ray inside the prism, which is parallel

to VH, crosses the prism symmetrically, that is, the triangle

VBiB 2 is isosceles. In fact, the points designated in the dia-

gram by the letters V, D and O will be the summits of isos-

celes triangles having the common base BiB2 ,
and they will

all lie therefore on the bisector of the refracting angle /3
=
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ZZiVZ2 , which is perpendicular to VH. The angle of in-

cidence at the first face and the angle of emergence at the

second face are equal in magnitude, although they are de-

scribed in opposite senses, so that 012' = — ai. The same is

true also in regard to the angles which the ray makes inside

Fig. 76.—Ray traverses prism symmetrically (VBi = VB2) ; case

of minimum deviation.

the prism with the normals to the two faces, that is, ci2=

-a/.
Now when the ray traverses the prism symmetrically, as

represented in Fig. 76, the deviation e has its least value

€Q . In order to show that this is true, it will be convenient

to reproduce the symmetrical quadrangle VGHJ in Fig. 76

in a separate diagram, as in Fig. 77. Suppose that H' desig-

nates the position of a point infinitely near to H lying likewise

on the arc of the circle of radius r, and draw H'G', H'J'

parallel to HG, HJ and meeting the arc of the other circle

in the points G', J', respectively. In the figure the point H'

is taken below the point H, and in this case it is plain that



Fig. 77.—Case of minimum deviation.
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the two parallels HJ, H'J' will meet the circumference of

the inner circle more obliquely than the other pair of parallel

lines HG, H'G', and, consequently, the infinitely small arc

J'J intercepted between

the first pair will be

greater than the arc G'G
intercepted between the

second pair. Hence, the

small angle J'VJ will be

greater than Z G'VG, and

therefore

ZJ'VG'>ZJVG.
The angle JVG here is the

angle of deviation (

e

) of

the ray that goes sym-

metrically through the prism; whereas Z J'VG/= € is the angle

of deviation of a ray which traverses the prism along a very

slightly different path. And according to the above reason-

ing (for we shall arrive at the same result if we take the

point H' also above H), we find:

e> e .

Accordingly, we see that the ray which traverses the prism sym-

metrically in the plane of a principal section is also the ray

which is least deviated.

It is easy to verify this statement experimentally. Thus,

for example, if a bundle of parallel rays is allowed to fall on

an isosceles triangular prism, so that while some of the rays

are incident on one of the equal faces and are transmitted

through the prism, the other rays of the bundle are reflected

from the base of the prism, as represented in (1) in Fig. 78;

and if then the prism is gradually turned around an axis

parallel to its edge, first, into position (2), which is the posi-

tion of minimum deviation, and then past this position into

a third position (3), it will be observed that when the prism

is in the position of minimum deviation the rays reflected

from the base will be parallel to the rays which emerge at



122 Mirrors, Prisms and Lenses [§ 53

the second face of the prism; which can only be the case

when the rays cross the prism symmetrically.

In spectroscopic work and in many other scientific uses of

the prism, the position of mini-

mum deviation, which is easily

found, is frequently the most

convenient and advantageous ad-

justment of the prism for purposes

of observation.

53. Deviation away from the

Edge of the Prism.—When a ray

of light passes through a prism of

more highly refracting material

than that of the surrounding me-

dium (n'>n), the deviation is al-

ways away from the edge towards

the thicker part of Ihe prism.

If the angles of the triangle

VBiB 2 (Fig. 79) at B x and B2 are

both acute, the incident and

emergent rays lie on the sides of

the normals at Bi and B 2 away
Fig. 78.—Experimental proof e r* • j ,1 , ,

that ray which traverses fr0m the P^sm-edge, SO that at

prism symmetrically is ray both refractions the ray will be
of minimum deviation. u , £ ,-, •, T£bent away trom the edge. It

one of the angles, say, the angle at B 2 , is a right angle,

the ray will not be deviated at all by the refraction at

this point, but at the other incidence-point it will be bent

away from the edge. And, finally, if one of the angles at Bi

or B 2 is obtuse, for example, the angle at Bi (Fig. 80), the

deviation on entering the prism will, it is true, be towards

the edge of the prism, but this deviation will not be so great

as the subsequent deviation away from the edge which is

produced at the second refraction when the ray issues from

the prism, as may be easily seen from the diagram. Thus,
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in every case when n f>n, the total deviation will be away
from the prism-edge.

If n'<n, all these effects will be reversed.

Fig. 79.—Deviation away from edge of prism.

54. Refraction of a Plane Wave Through a Prism.—
The diagram (Fig. 81) shows a principal section of the prism,

and the straight line BiD represents the trace of a plane

wave (supposed to be perpendicular to the plane of the

paper and parallel therefore to the

edge of the prism) advancing to-

wards the first face of the prism in

the direction DV at right angles to

BiD. If around the point Bi, which

lies in the first face of the prism, the

arc of a circle is described with ra-

71

dius BE= -,DV, then, according to

HUYGENS'S principle (§ 5), the Fig. 80 —Deviation away

straight line VE tangent to this circle
from edge of prism '

at E will represent the trace of the wave-front inside the prism.

Let the straight line BiE meet the second face of the prism

n'
at B 2 . Around V as center with radius VF= - EB 2 describe

the arc of a circle; then the straight line B 2F tangent to this
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circle at F will represent the trace of the emergent wave-

front.

The disturbance at any point C will have emanated from

some point on ABi, and the time

taken by the light to go from Bi to

B2 inside the prism will be the

same as that required to go from

D to F in the surrounding me-

dium (§ 39) ; that is, the optical

lengths along these two routes

are equal. For, as appears from
Fig. 81.—Refraction of plane ^he Construction,

wave through prism.
n(DV+VF) = n'.BiB 2 .

An excellent and most instructive mechanical illustration

of the refraction of a plane wave through a prism can be ob-

tained by using the roller and tilted board described in § 32

with a triangular piece of plush cloth glued in the middle

of the board to represent the prism (see Fig. 45).

II. Analytical Investigation

55. Trigonometric Calculation of the Path of a Ray in a

Principal Section of a Prism.—The angles of incidence and

refraction at the first and second faces of the prism, denoted

by ai, ai' and a2 , a2 ', are, by definition (§ 27), the acute angles

through which the normals to the refracting surfaces at the

incidence-points have to be turned in order to bring them into

coincidence with the incident and refracted rays at the two

faces of the prism; thus, in Fig. 73, ZNiBiA= rii, ZNi'BiB2

= ai', ZN2B 2Bi= a2 , ZN2
/B 2C= a2

'.

Assuming that the prism is surrounded by the same me-

dium on both sides, and being careful to note the sense of

rotation of each of the angles, we obtain by the law of re-

fraction, taken in conjunction with the obvious geometrical

relations as shown in the figure, the following system of
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equations for calculating the path of a ray through a prin-

cipal section of a prism

:

n'.sinai' = 7i.sinai, a 2 = a/— fi, n

.

sin

a

2
' = n' . sin

a

2 .

Combining these formulse so as to ehminate ai' and a2 , we
may derive the following convenient expression for deter-

mining the angle of emergence (a2 ') at the second face of the

prism

:

, o nVn'2-n2
. sin 2 a\

sin a2 = sm ai . cos p - sin p .

n

Thus, if we know the value of the relative index of refraction

(n'/ri) and the refracting angle of the prism (/3=ZZiVZ2),

we can calculate the angle of emergence (

a

2 ') corresponding

to any given direction (ai) of the ray incident on the first

face of the prism.

The total deviation ( e ) of a ray refracted through a prism

is measured, as defined above (§50), by ZJVG, and since

this angle is equal to the external angle at D in the triangle

DBiB 2 , we have:

€=ZB 2BiD+ZDB2Bi
= Z Ni'BiD - Z NiBiB2-fZDB2N2 - Z BiB2N2

= ai— a/— a2
'+ a2 ;

and since a\ — a2 =/3, we obtain finally the following ex-

pression for the angle of deviation:

e= ai- a2'-/3.

These formulae contain the whole theory of the refraction of

a ray through a prism in a principal section. It will be in-

teresting to discuss analytically some of the special cases

which we have already studied in the preceding sections of

this chapter.

56. Total Reflection at the Second Face of the Prism.—
If the angle of emergence at the second face of" the prism is

a right angle, that is, if a2
' = -90°, the emergent ray B 2C

will issue from the prism along the second face in the direc-

Tl Tl

tion B 2Zi (Fig. 75) . Hence, sin <x2 = — . sin a2
'= -„ and there-

Tl Tl

fore a2 = - A, where A denotes the critical angle (§ 36) of the
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n
media n, n', denned by the relation sinA= — . If the absolute

value of the angle a2 is greater than A, the ray will be totally

reflected at the second face of the prism, and there will be no
emergent ray. This case may be discussed in some detail.

For a prism of given refracting angle (/J), there is a certain

limiting value (t) of the angle of incidence ( cti) at the first

face of the prism (§ 51) for which we shall have at the second

/
/
/

1
1
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be worth while to examine this formula for certain particular

values of the refracting angle /3.

(1) If /3>2A, then, since sinA = -?, the formula shows that

sin l will be greater than unity, so that for a prism of this

form there is no angle corresponding to the limiting angle t.

No ray can be transmitted through a prism whose refracting

angle is more than twice as great as the critical angle of the two

media in question. A prism of this size is called a totally

Fig. 83.—Prism with refracting angle /3 = A.

reflecting prism; if it is made of glass of index 1 . 5 and sur-

rounded by air, the refracting angle should be about 84° at

least.

(2) If jft = 2A, we find that t = 90°; which is the case repre-

sented in Fig. 82. The only ray that can get through this

prism is the ray that traverses it symmetrically, entering the

prism along one face and leaving it along the other.

(3) If /3>A but <2A (that is, if 2A> (3> A), the value of

the angle i as determined by the formula above will be com-

prised between 90° and 0°. This is the case which was shown
in Fig. 73. The direction of the limiting incident ray is be-
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Fig. 84.

tween ZiBi and NiBi; that is, ZViBK will be an obtuse

angle.

(4) If j8 = A, we find i = 0°, and then the limiting incident

ray will proceed along the

normal NiBi, as shown in

Fig. 83, and ZVBiK (or

ZVBiA) will be a right

angle.

(5) FinaUy, if /5<A,the

limiting angle of inci-

dence (i) will be negative

in sign; and therefore in a

more or less thin prism of

this description the limit-

ing incident ray KBi will

fall on the side of the

normal NiBi towards the

apex V of the prism, so that the angle VBiK will be an

acute angle (Fig. 84).

Any ray incident on the first face of the prism at Bi and
lying within the angle KBiZi will be transmitted through

the prism; whereas if the ray falls within the supple-

mentary angle VBiK, it will be totally reflected at the

second face.

In Kohlrausch's method of measuring the relative index

n'
of refraction (— ), the prism is adjusted so that the incident

lb

ray " grazes" the first face, and then if the refracting angle

of the prism (/3) is known, and if the angle of emergence

(a2
r

) is measured, the value of n'\ n may be calculated by

means of the formula

:

cos/3-sina2'

-Prism with a refracting angle

/5<A.

v/
;n& "I , (ai = 90°).
n sinP

The principle of total reflection is also employed in the

prism refractometers of Abbe and Pulfrich for measure-

ment of the index of refraction.
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57. Perpendicular Emergence at the Second Face of the

Prism.—For this case we have d2 = d2
' = 0°, and therefore

di'= fi, cii= £-€, and hence:

n'_ sin(ft- e) .

n sin/3

which is also a convenient formula for the experimental de-

termination of the value of the relative index of refraction.

A description of the apparatus and the method of procedure

may be found in the standard treatises on physics.

58. Case when the Ray Traverses the Prism Symmet-
rically.—As has been pointed out already (§ 52), a special

case of great interest occurs when the ray traverses the prism

symmetrically. Under these circumstances, the general

prism-equations given in § 55 take the following forms:

di= - d2 =—2— ' a i
= ~" a2= 2>

. /3+€o
sin —-—

sin-

where eQ denotes the angle of deviation of this symmetric

ray. The last of these formulae is the basis of the Fraun-
hofer method of determining the relative index of refrac-

tion, the angles fi and e being both capable of easy measure-

ment.

This last formula may also be transformed into the fol-

lowing form:

n.sin|

tan-^=
2 , e

'

n — n.cos-^

whereby the refracting angle f3 can be calculated in terms

of n, n' and e .

59. Minimum Deviation.—The prism itself is defined by
its refracting angle (/3) and the relative index of refraction

(n'/ri). The total deviation (e) of a ray refracted through
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a given prism depends only on the angle of incidence (ai),

according to the formula:

€= ai- a2
'-

P;

for the angle a2
' may be expressed in terms of ah /3 and n'[n,

as we have seen (§ 55). Hence, for a given value of these

three magnitudes the angle e will be uniquely determined.

On the other hand, for a given value of the angle e there

will always be two corresponding values of the angle of in-

cidence ai; for it is obvious from the principle of the reversi-

bility of the light-path (§ 29) that a second ray incident on

the first face of the prism at an angle equal to the angle of

emergence of the first ray will emerge at the second face at

an angle equal to the angle of incidence of the first ray at

the first face, and these two rays will be equally deviated in

passing through the prism. For example, suppose that the

values of the angles of incidence and emergence in the case

of the first ray are ai= 7, a2
' = 7': a second ray incident on

the first face of the prism at the angle ai= — y' will emerge

at the second face at an angle a2
' =

—

y, and each of these rays

will suffer precisely the same deviation, viz., e= 7 — 7'— /3.

Thus, corresponding to any given value of the angle €,

within certain limits, there will always be a pair of rays which

are deviated by this same amount. One pair of such rays

consists of the two identical rays determined by the relation

di=7=- a2
'.

In fact, this is the ray which traverses the prism symmet-

rically, and a little reflection will show that the deviation of

this ray must be either a maximum or a minimum.

But while the best way of demonstrating that the ray

which goes symmetrically through the prism is the ray of mini-

mum deviation (§ 52) involves the employment of the methods

of the differential calculus, the following analytical proof

demands of the student a knowledge of only elementary

mathematics.

The deviation at the first face of the prism is ei= Hi— a/,
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and that at the second face is e2 =a2 -a2
' (§35), and

hence the total deviation is

e= €i-f-e2 = (ai- a/)+ (a2 - a2 '),

or, since a/ - a2 = 13, e = ai— a2
' - /3, as has been already

remarked, for example, in § 55. Assume now that n'>n, and,

consequently, that the angle e is positive, as is always the

case when the ray is bent away from the edge of the prism

(§ 53) ; then it is evident that the angle e will have its least

value (e ) in the case of that ray for which the function

(ai— a2 ') is least. Now since

n . sin di = n' . sin a/, n . sin a2
'= n' . sin a2 ,

we obtain by subtraction

:

n(sin ai— sin a2 ') = 7i'(sin a/— sin a2),

and hence by an obvious trigonometric transformation

:

. d\- a 2
' ai+tt/ , . ai'—

a

2 ai'+a 2
n. sin—^—

-

cos—o

—

=w —9

—

,cos—2— '

which may be written as follows:

. ai-a 2 n . p 2
sm—^— =„ .sm-^.-

According as ai= — a2
r

, the deviation €i at the first face of

the prism will (see § 35) be greater than, equal to, or less than,

the deviation e2 at the second face; that is, according as

ai=— a2 ', we shall have ( ai— di')=( a2
— a2'), and hence also

ai+a2/ > a2+ai/

2 < 2 '

If we suppose, first, that ai> — a2
r

, then a/> — a2 and

(a2+a/) > 0; and since the cosine of a positive angle de-

creases as the angle increases, it follows that here we must

have:

a/+a 2 ai-f-a 2
'

cos x >cos—^— •

On the other hand, if we suppose, second, that ai< — a2 ', then
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ai'<-a2 and (a2+ai')<0; but in this case (a2+ai')>

( ai+ a2'), so that although (

a

2+ a/) and ( cti+ a2 ') are both

negative, the absolute value of the former is greater than that

of the latter, and hence here also we find exactly the same

result as before.

Thus, whether ai is greater or less than — a2 ', the ratio

ai'+ft2
cos—^

—

aH-a 2
' '

cos-
2

and only in the case when ai = — a2
' will this ratio equal to

unity. Hence, sin—s has its least value when a\ = — a/,

and then also the deviation ( e) is a minimum and equal to

€ = 2ai-/3.

The same process of reasoning applied to the case when

n'<n leads to the conclusion that the angle € will be a maxi-

mum for the ray which traverses such a prism symmetrically,

for example, an air-prism surrounded by glass; but in this case

the angle € will be negative in sign, and since a maximum value

of a negative magnitude corresponds to a minimum absolute

value, the actual deviation of the ray is least in this case also.

60. Deviation of Ray by Thin Prism.—If the refracting

angle of the prism (/3) is small, as represented, for example,

in Fig. 85, the deviation (e) will likewise be a small angle

of the same order of smallness; for if /5 = a/ - a2 is small, then

( ai — a2 ') will be small also, and the angle e is the difference

between these two small magnitudes. In fact, the deviation

€ produced by a thin prism will not only always be small,

but it will never be very different from its minimum value

e . Accordingly, in the case of a thin prism, we may put

e = € without much error; and therefore very approxi-

mately (see § 58)

:

n 2

n . &
sin ^
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Consequently, the deviation e, as calculated by this formula,

will depend only on the prism-constants ( /3, n' : n) and not

on the angle of incidence ( ai). The smaller the angle /5, the

more nearly correct this formula will be; and if the angle /3

is so small that we may substitute ~ and —^— in place of

sin 2 and sin —^—, respectively, we obtain the exceedingly

Fig. 85.—Prism with comparatively small refracting

angle.

useful and convenient practical relation for the angle of

deviation of a ray refracted through a thin prism, viz.:

which, however, is more frequently written:

«-(»-Dft
where n is employed now to denote the relative index of

refraction. Accordingly, in a thin prism the deviation is di-
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redly proportional to the refracting angle. For example, the

deviation in the case of a thin glass prism surrounded by

air for which n = 1 . 5 is one-half the refracting angle.

61. Power of an Ophthalmic Prism. Centrad and Prism-

Dioptry.—An ophthalmic prism is a thin glass prism, whose

index of refraction is usually about 1.52, which is used to

correct faulty tendencies and weaknesses of the ocular

muscles which turn the eye in its socket about the center of

rotation of the eye-ball. In an ordinary laboratory prism

the two faces are usually cut in the form of rectangles having

the edge of the prism as a common side; but the contour of

an ophthalmic prism which has to be worn in front of the eye

in a spectacle-frame is circular or elliptical like that of any

other eye-glass, and its edge is the line drawn tangent to this

curve at the thinnest part of the glass. The line drawn

perpendicular to this tangent at the point of contact and

lying in the plane of one of the faces of the prism is the so-

called "base-apex" line, which is a term frequently employed

by writers on spectacle-optics.

The formula

e=(n-l)/3
obtained in § 69 is peculiarly applicable to the weak prisms

used in spectacles. As long as the refracting angle of the

prism does not exceed, say, 10°, the error in the value of e

as calculated by this approximate formula will be less than

5 per cent.

Formerly it was customary to give the strength or power

of an ophthalmic prism in terms of its refracting angle ft

expressed in degrees; but the proper measure of this power

is the deviation produced by the prism. However, instead

of measuring this angle in degrees, Dennett has suggested

that the deviation of an ophthalmic prism shall be measured

in terms of a unit angle called a centrad, which is the one-

hundredth part of a radian and equal therefore to the angle

subtended at the center of a circle of radius one meter by an

arc of length one centimeter. Since 7r radians= 180°, the
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relation between the centrad and the degree is given as

follows

:

1°=
,ft

centrads,

or

1° = 1 . 745 ctrd., 1 ctrd. = . 573°.

Prior to this suggestion, Mr. C. F. Prentice, of New
York, had proposed in

1888 to measure the de-

viation of an ophthalmic

prism in terms of the

linear or tangential dis-

placement in centime-
i j Fig. 86.—Deviation of prism:

ters on a screen placed tan €=ab:OA.
at a distance of one

meter from the prism. If the straight lines OA, OB (Fig. 86)

represent the directions of the incident and emergent

rays, respectively, then ZAOB will be the angle of devi-

ation of the prism; and if a plane screen placed at right angles

AB
to OA at A is intersected by OB at B, then tanZ AOB=^-.

Now if the distance OA = 100 cm. and if AB = z cm.,

then, according to Prentice's method, the ZAOB would

be an angle of x units and the power of the prism would be

denoted by x. Dr. S. M. Burnett suggested that the name
prism-diopter or prism-dioptry be given to this unit. (The term

"prismoptrie" was proposed by Professor S. P. Thompson.)

The prism-dioptry is the angle corresponding to a deviation of

one centimeter on a tangent line at a distance of one meter;

and, accordingly, when the angle of deviation is equal to the

angle whose trigonometric tangent is x/100, the power of the

prism is said to be x prism-dioptries or zA, where the symbol

A stands for prism-dioptry. The chief objection to be urged

against this unit of angular measurement is that the angle

subtended at a given point O (Fig. 87) by equal line-segments

on a line Ay perpendicular to Ox at A diminishes as the
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segment on Ay is taken farther and farther from A. In

other words, since tan — * z/100 is less than x . tan - x
1/100, x

prism-dioptries is less than x times one prism-dioptry. Or-

dinarily, the variability in the magnitude of a unit would

constitute an insuperable objection to it; but so long as the

Fig. 87.—Unequal angles subtended at O by equal intervals on straight

line Ay drawn perpendicular to OA.

angles to be measured are always small, as is the case with

ophthalmic prisms, the prism-dioptry may be regarded as in-

variably equal to the tan - 1 1/100 or about 34' 22. 6" without

sensible error; and hence we may say, for example, that

2A+3A = 5A, although this statement is not quite accu-

rate. At any rate, whatever may be the theoretical objec-

tions, this unit of measurement of the strength of a thin

prism is so convenient and satisfactory that it has been gen-

erally adopted in ophthalmic practice.

In point of fact, with the small angular magnitudes which

are here pre-supposed (the power of an ophthalmic prism

seldom exceeds 6 ctrd.), there is practically no distinction to

be made between the angle itself and the tangent of the angle,
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so that we may regard the centrad and the prism-dioptry as

identical in most cases; that is,

1A = 1 ctrd. =0.573°.

Accordingly, we obtain the following relation between the

power (p) of an ophthalmic prism expressed in prism-

dioptries or centrads and the refracting angle (/3) given in

degrees:

P=^f (n-l)/3=l. 745(n-l)ft

where n denotes the relative index of refraction. If n= 1.5,

then the power of a prism of refracting angle /3 degrees is

0.873 prism-dioptries.

However, in order to exhibit the actual relations still

more clearly, the following table gives the values in degrees,

minutes and seconds of all integral numbers of prism-dioptries

and centrads from 1 to 20; and incidentally it will be seen

that whereas an angle of k centrads contains k times as many
degrees, minutes and seconds as an angle of 1 centrad, where

k denotes any integer from 1 to 20, the same statement is

not strictly true of the prism-dioptry.
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Prism-

Dioptries
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other with their edges inclined to each other at an angle 7
which can be measured; and having obtained the necessary

correction in this way, he has to prescribe a single prism which

will produce precisely the

same resultant effect as

the two superposed

prisms of the trial-case.

In general, it would be

exceedingly laborious and

difficult to calculate the

power of this resultant

prism, but, fortunately,

the problem in this case

is enormously simplified

Fig. 88, a.—Parallelogram law for find-
ing single prism equivalent to a com-
bination of two thin prisms.

by the fact that the refracting angles are so small that it is

quite simple to obtain an approximate solution which is

sufficiently accurate and reliable for ordinary practical

purposes.

Let the deviation-angles or powers of the two prisms, de-

noted by pi and p2 , be represented, according to the method

•r/ explained in § 50, by
the vectors OA, OB,
respectively (Fig. 88),

which are drawn parallel

to the edges of the prism,

so that ZAOB = 7. Com-
plete the parallelogram

OACB and draw the di-

agonal OC. The vector

OC will represent on

the same scale the deviation-angle or power p of the resultant

prism, as we shall proceed to show.

If a point P is taken anywhere in the plane of the parallelo-

gram OACB, it may easily be proved that the area of the

triangle POC is equal to the sum or difference of the areas of

the triangles POA and POB according as the point P lies

Fig. 88, b.—Parallelogram law for finding

single prism equivalent to a combina-
tion of two thin prisms.
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outside the Z AOB, as in Fig. 88 (a), or inside this angle, as in

Fig. 88 (b) , respectively. And, therefore, if PQ, PR and PS are

drawn perpendicular to OA, OB and OC, respectively, then

SP.OC = QP.OA=*=RP.OB.
For simplicity, let us assume that the deviations p\, p2

produced by the two component prisms are indefinitely

small. Now suppose that the point P is turned, first, about

OA as axis through a very small angle pi and then about OB
as axis through the small angle p2 . In consequence of the

first rotation it will move perpendicularly out from the plane

of the paper towards the reader through a tiny distance

corresponding to the arc of a circle described around Q as

center with radius QP, the length of this arc being equal

to the product of the radius by the angle, that is, equal to

QP . OA, since the length of OA is made equal to the magni-

tude of the angle p±. If now in this slightly altered position

the point P is again rotated, this time, however, around OB
as axis, through another small angular displacement pi = OB,

either it will move a little farther out from the plane AOB,
as in the case shown in Fig. 88 (a), or it will move back

away from the reader, as in the case shown in Fig. 88 (b),

by an additional amount equal to RP.OB. And as this

latter displacement will also be very nearly at right angles to

the plane of the paper, the resultant angular displacement

of the point P may be regarded as equal to the algebraic

sum of its two successive displacements and numerically

equal, therefore, to

QP.OA± RP.OB,
where the upper sign is to be taken in case the point P lies

outside the angle AOB and the lower sign in case it lies inside

this angle. In either case, therefore, the resultant displace-

ment of P will be equal to SP . OC. But this product is equal

to the linear displacement which the point P would have if

it experienced an angular displacement represented by the

vector OC.

Hence, if the straight lines OA, OB drawn parallel to the
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edges of the two thin prisms represent the components of the

total deviation of a ray which traverses both prisms, the

diagonal OC of the parallelogram OABC will represent the

resultant or total deviation, and this effect will be produced

by a single prism of power p = OC placed with its edge in-

clined to the edge of the prism of power pi ( = OA) at an angle

6 = Z. OAC. If the powers ph p2 of the two component prisms

are given in prism-dioptries (or in terms of any other suit-

able unit, for example, degree, centrad, etc.), and if also the

angle y between the edges of the prisms is given in degrees,

the power p of the resultant prism may, therefore, be com-

puted by the formula:

P=Vpi2+P2 2+2pi. Pi- cost ,

and the angle 6 which shows how the resultant prism is to

be placed may be calculated by the formula:

tanfl= ^
Sin7

Pi+P2.cosy

In particular, if 7 = 90°, then p= -\/pi2+P2 2
> tan 6 =—

.

As an illustration of the use of these formulae, suppose

that the deviations produced by the two prisms separately

are 3° and 5°, and that the edges of the prisms are inclined to

each other at an angle of 60°. Then pi = 3°, p2 = 5°, y = 60°,

and hence the deviation produced by the two prisms together

5V3
will be p= \/9+25+ 15 = 7°; and since tan#= —— , the

resultant prism in this case is found to be a prism of power
7° placed with its edge at an angle of nearly 38° 13' with that

of the weaker of the two component prisms.

A " rotary prism" used for finding the necessary prismatic

correction of a patient's eye is an instrument, circular in form,

which consists of two ophthalmic prisms of equal power

(pi = 7?2) conveniently mounted so that the prisms can be

rotated about an axis perpendicular to the plane of the in-

strument, one in front of the other, the angle between the

prism-edges being shown by the positions of two marks which
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move as the prisms are turned over a circular arc graduated

in degrees. In the initial position when the two marks are

at opposite ends of a diameter of the circular scale the base

of one prism corresponds with the edge of the other, so that

in this position the two prisms are equivalent to a glass

plate with plane parallel faces (7 = 180°, p = pi— P2 = 0).

The maximum effect is obtained when the edges of the prism

correspond (7 = 0°, p = pi~{-p2 = 2pi). With a device of this

kind, we can obtain, therefore, any prismatic power from

p = to p = 2pi.

On the other hand, we can resolve the effect of a given

prism of power p into a component p . cos 6 in one direction

and a component p . sin 6 in a direction perpendicular to the

first. Thus, a prism of power 5 centrads with its edge at an

angle of 30° to the horizontal is equivalent to a combination

of two prisms of powers -—- and ~ centrads, with their

edges horizontal and vertical, respectively.

PROBLEMS

1. Show how to construct the path of a ray refracted

through a prism in a principal section; and prove the con-

struction. Discuss the following special cases, and draw

separate diagrams for each of them : (a) Incident ray normal

to first face of prism, (b) Emergent ray " grazes " second

face; (c) Ray traverses prism symmetrically; (d) Ray is in-

cident on first face on side of normal towards the edge of

the prism. ^
2. Show that the total deviation of a ray in a principal

section of a prism of more highly refracting material than

the surrounding medium is always away from the prism-

edge. Discuss each of the three possible cases, viz., When
the point where the two incidence-normals intersect falls

(a) inside the prism, (b) outside the prism, and (c) on one of

the two faces of the prism. Draw diagram for each case.

3. Obtain a formula for calculating the magnitude of the
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angle of incidence at the first face of the prism of the ray

which emerges from the prism along the second face; and dis-

cuss this formula for the cases when the refracting angle of

the prism is (a) greater than 2A, (b) equal to 2A, (c) less

than 2A but greater than A, (d) equal to A, and (e) less than

A; where A denotes the so-called critical angle of the two

media concerned. Draw diagram for each case.

4. Show that the deviation of a ray which goes symmet-

rically through a prism in a principal section is less than

that of any other ray.

5. Show that the point of intersection of the incidence-

normals to the two faces of a prism is equidistant from the

incident ray and its corresponding emergent ray.

6. Construct the path of a ray refracted through a prism

of small refracting angle; and show that the angle of deviation

will also be a small angle of the same order of smallness, no

matter how the ray falls on the prism.

7. What is the smallest angle that a glass prism (n = 1 . 5)

can have so that no ray can be transmitted through it?

What is the magnitude of this angle for a water prism

(n = 1.33)? (Assume in each case that the prism is sur-

rounded by air of index unity.)

Ans. 83° 37' 14"; 97° 10' 52".

8. What must be the refracting angle of a prism whose

index of refraction is equal to \/2 in order that rays that

are incident on one of its faces at angles less than 45° will

be totalfy reflected at the other face? Ans. 75°.

9. The refracting angle of a prism is 60° and the index of

refraction is equal to \/2. Show that the angle of minimum
deviation is 30°, and draw accurate diagram showing the

construction of the path of this ray through the prism.

10. The refracting angle of a glass prism (n = 1.5) is 60°,

and the angle of incidence is 45°. Find the angle of deviation.

What is the angle of minimum deviation for this prism?

Ans. 37° 22' 52.5"; 37° 10' 50".

11. If the angle of minimum deviation of a ray traversing
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a principal section of a prism is 90°, show that the index of

refraction cannot be less than s/2.

12. Find the angle of minimum deviation in the case of a

glass prism (n= 1 . 54) of refracting angle 60°.

Ans. 40° 42' 28".

13. The minimum deviation for a prism of refracting angle

40° is found to be 32° 40'. Find the value of the index of

refraction. Ans. 1.7323.

14. A glass prism of refracting angle 60° is adjusted so

that the ray "grazes" the first face, and in this position the

angle of emergence is found to be 29° 25' 49". Determine

the index of refraction. Ans. 1 . 52.

15. A prism is made of glass of index 1.6, and the angle

of minimum deviation is found to be 28° 31' 20". Calculate

the refracting angle. Ans. 42° 39' 44".

16. The efracting angle of a water prism (n = -|) is 30°.

How must a ray be sent into this prism so that it will emerge

along the second face?

Ans. Ray must He on the side of the normal towards the

edge of the prism, and make with the normal an angle of

25° 9' 15".

17. The angle of incidence for minimum deviation in the

case of a prism of refracting angle 60° is 60°. Find the

index of refraction. Ans. v3.
18. Find the index of refraction of a glass prism for sodium

light for the following measurements: Refracting angle of

prism = 45° 4'; angle of minimum deviation = 26° 40'.

Ans. 1.53.

19 The refracting angle of a prism is 30° and its index of

refraction is 1.6. Find the angles of emergence and deviation

for each of the following rays: (a) Ray meets first face nor-

mally; (b) Angle of incidence at first face is equal to 24° 28';

(c) Angle of incidence at first face is equal to 53° 8'; and

(d) Ray " grazes" first face.

Ans. (a) 53° 8'; 23° 8'; (6) 24° 28'; 18° 56'; (c) 0°; 23° 8';

(d) 13° 59'; 46° 1'.
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20. Find the refracting angle of a glass prism (n = 1.52)

for which the minimum deviation is 15°. Ans. 27° 24' 15".

21. The refracting angle of a flint glass prism is measured

and found to be 59° 56' 22.4"; and the angles of minimum
deviation for rays of light corresponding to the Fraunhofer
lines D, F and H are also measured and found to have the

following values: 46° 31' 4.15"; 47° 35' 59.2"; and 49° 30'

5.7", respectively. Calculate the values of the indices of

refraction nB , nF , and nH -

Ans. rcD = 1 . 603528; nF = 1 . 614771 ; nH = 1 . 634183.

22. The refracting angle of a crown glass prism is measured

and found to be 60° 2' 10.8"; and the angles of minimum
deviation for rays of light corresponding to the Fraunhofer
lines D, F and H are also measured and found to have the

following values: 38° 38' 14.3"; 39° 10' 51.8"; and 40° 3'

49.4", respectively. Calculate the values of the indices of

refraction nD , nF , and nK .

Ans. nD = 1 . 516274 ; nF= 1 . 522437 ; nu= 1 . 532370.

23. A prism is to be made of crown glass of index 1.526,

and it is required to produce a minimum deviation of 17° 20'.

To what angle must it be ground? Ans. 31° 20'.

24. A ray of light falls on one face of a prism in a direction

perpendicular to the opposite face. Assuming that the re-

fracting angle of the prism (/3) is an acute angle, show that

the ray will emerge along the opposite face if

cot/3 = cotA— 1,

where A denotes the critical angle of the prism-medium.

25. A ray "grazes" the first face of a prism and emerges

at the second face in a direction perpendicular to the first

face: show that the refracting angle (/3) is such that

cot/3=Vw2-l-l,
where n denotes the index of refraction of the prism-medium.

26. The refracting angle of a prism is 60° and the index of

refraction is s/7/3. What is the limiting angle of incidence

of a ray that will be transmitted through the prism?

Ans. 30°.
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27. Show that if € denotes the angle of minimum devia-

tion of a prism of refracting angle /3, the angle fi cannot be

greater than (7r— e ) and the index of refraction cannot be

less than sec-^--

28. Show that the minimum deviation of a prism of given

index of refraction increases with increase of the refracting

angle of the prism.

29. Derive the formula for the angle of deviation of a thin

prism, and show that the deviation is approximately con-

stant for all angles of incidence.

30. Show that when a thin glass prism of index f is im-

mersed in water of index |- the deviation of a ray will be

only one-fourth of what it would be if the prism were sur-

rounded by air.

31. The refracting angle of a prism of rock salt is 1° 30'.

How much will a ray be deviated in passing through it?

And what should be the refracting angle of a rock salt prism

which is to produce a deviation of 48'? (Index of refraction

of rock salt = 1 . 54.) Ans. 48' 36" ;
1° 29\

32. What must be the refracting angle of a water prism of

index |- to produce the same deviation as is obtained with

a glass prism of index f whose refracting angle is equal to

2°? Ans. 3°.

33. A glass prism of index 1.5 has a refracting angle of

2°. What is the power of the prism in prism-dioptries?

Ans. 1 . 745 prism-dioptries.

34. The power of a prism is 2 prism-dioptries and n= 1 .5.

Find the refracting angle. Ans. 2 .
29°.

35. A prism of refracting angle 1° 25' bends a beam of

light through an angle of 1° 15'. Calculate the index of

refraction and the power of the prism in prism-dioptries.

Ans. n = 1 . 882; 2 . 18 prism-dioptries.

36. Two thin prisms are crossed with their edges at an an-

gle of 30°. The first prism produces a deviation of 6° and

the second a deviation of 8°. Find the deviation produced
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by the single prism which is equivalent to this combination

and the angle which the edge of the resultant prism must

make with the edge of the first prism.

Ans. Deviation of resultant prism = 13.53°; angle be-

tween its edge and that of the 6°-prism=17° 11'.

37. Two prisms, each of power 5 prism-dioptries, are

combined base down with their base-apex lines inclined to

the horizontal at angles of 45° and 135°. Find the equivalent

single prism.

Ans. A prism of power a little more than 7 prism-dioptries,

base down, vertical meridian (edge horizontal).

38. What will be the horizontal effect of a prism of power

10 placed with its base-apex line at an angle of 20° with the

horizontal?

Ans. It will be the same as the effect of a prism of power

nearly 9 . 4 in horizontal meridian (edge vertical)

.

39. The base-apex line of a prism of power 4 centrads makes

an angle of 120° with the horizontal. Show that it is equiva-

lent to a combination of two prisms, one of power 2 centrads in

the vertical meridian (edge horizontal) and the other of power

3.46 centrads in the horizontal meridian (edge vertical).

40. Find the single prism equivalent to a combination of

two prisms superposed with their base-apex lines at right

angles to each other, the power of one being 3 and that of

the other 4.

Ans. A prism of power 5 with its base-apex line inclined to

that of the weaker prism at an angle of nearly 53° 8'.

41. Two equal prisms, each of power 3, are superposed

in meridians inclined to each other at an angle of 120°.

Find the equivalent single prism.

Ans. A prism of power 3 in a meridian halfway between

the meridians of the two components.

42. The angle between the base-apex lines of a combina-

tion of two unit prisms is 82° 50', and the bisector of this

angle is horizontal. What is the horizontal effect of the

combination? Ans. 1 . 5 units.
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43. ABCDE is the principal section of a pentagonal prism.

AB = BC, AE = CD, ZABC = 90°, ZEAB = Z BCD = 112.5°.

A ray of light RS lying in the principal section is incident on

the face BC at the point S. The ray enters the prism at this

face, and is reflected, first, from the face AE, and then from

the face DC, and emerges finally at a point P in the face AB
in the direction PQ. Show that PQ makes a right angle

with RS.

44. ABC is a principal section of a triangular prism,

Z B = 2Z A. A ray of light lying in the plane ABC is refracted

into the prism at the side BC, and after undergoing two

internal reflections, first, from the side AB and then from

the side CA, emerges into the surrounding medium at the

side AB. Show that the total deviation of the ray will be

equal to the angle at B.



CHAPTER VI

EEFLECTION AND REFRACTION OF PARAXIAL RAYS AT A
SPHERICAL SURFACE

63. Introduction. Definitions, Notation, etc.—The center

of the spherical refracting or reflecting surface ZZ (Fig. 89)

will be designated by C. The axis of the surface with respect

to a given point M is the

straight line joining M
with C, and the point A
where the straight line

MC (produced if neces-

sary) meets ZZ is called the

pole or vertex of the surface

with respect to the point

M. Evidently, the spheri-

cal surface will be sym-

metrical around MC as

axis, and the plane of the

diagram which contains the axis is a meridian section of the

surface.

It will be convenient to take the vertex A as the origin

of a system of plane rectangular coordinates; the axis of

the surface being chosen as the z-axis and the tangent to the

surface at its vertex, in the meridian plane of the diagram,

being taken as the ?/-axis. The positive direction of the x-axis

is the direction of the incident ray which coincides with this

line, and since the diagrams are all drawn on the supposition

that the incident light goes from left to right, a point lying on

the z-axis to the right of A will be on the positive half of

the axis. The positive direction of the y-axis is the direction

found by rotating the positive half of the x-axis through a

149

Fig. 89, a.—Ray incident on convex
spherical surface crosses axis at

point M in front of surface.
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right angle in a sense opposite to that of the motion of the

hands of a clock in the meridian plane of the diagram. Ac-

cordingly, if the positive direction of the x-axis is along a

Fig. 89, b.—Ray incident on convex spherical surface crosses axis at point

M on the other side of the surface.

horizontal line from left to right, the positive direction of

the i/-axis will be vertically upwards.

According as the center C lies on the same side of the

spherical surface as that from which the incident light comes

or on the opposite side, it is said to be concave (Fig. 89, c

and d) or convex (Fig. 89, a and 6), respectively. The radius

r of the spherical surface is the abscissa of the center C, that

is, r= AC. It is the step from A to C, and this is always a

positive step for a convex surface (Fig. 89, a and b) and a

negative step for a concave surface (Fig. 89, c and d). The

radius of a convex surface whose center is 60 cm. from its

vertex is r= +60 cm., and the radius of a concave surface of

the same size is r— — 60 cm.
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Fig c.—Ray incident on concave
spherical surface crosses axis at point

M in front of the surface.

It will be assumed in this chapter that any ray with which

we are concerned lies in a meridian plane of the spherical

surface; so that any straight line such as RB which repre-

sents the path of an inci- y

dent ray will intersect the

axis either " really" (Fig.

89, a and c) or " virtually
"

(Fig. 89, b and d) at some

point designated here by

M (see § 8). The point

designated by R is any

point on the incident ray

RB at which the light

arrives before it gets to

either M or the incidence-

point B. The straight line BC which joins the point of

incidence with the center of the surface will be the incidence-

normal, and if N designates a point on this normal lying in

front of the spherical surface, then ZNBR = a will be the

angle of incidence (§§ 13 &
27). The plane of this

angle is the plane of inci-

dence, which is the merid-

ian plane of the diagram.

From the incidence-point

B draw BD perpendicular

to the x-axis at D ; the or-

dinate h =DB is called the

Fig. 89, d.-Ray incident on concave incidence-height of the ray.

spherical surface crosses axis at point The slope of the Tdy is the
M on the other side of the surface.

acute angle thrQugh wMch
the rr-axis has to be turned around the point M in order

that it may coincide in position (but not necessarily in

direction) with the rectilinear path of the ray. If this angle

is denoted by 6, then ZAMB= 6. Here, as always in the

case of angular magnitudes (§ 13), counter-clockwise rotation
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is to be reckoned as positive. And, finally, the acute angle

at the center C of the spherical surface subtended by the

arc BA will be denoted by
(f>.

This angle, sometimes called

the "central angle," is denned as the angle through which

the radius CB must be turned around C in order to bring B
into coincidence with the vertex A; thus, = ZBCA. The
angles A, 6 and <£, defined as above, are given by the fol-

lowing relations:

h h
tan# = — t^Tt> sm<f> = ~, a= 6-\-<j).

These formulae should be verified for each of the diagrams

Fig. 89, (a), (&), (c), {d).

Moreover, since BM = -, and since (see § 45)
COS0' v * /

DM =DC+CA+AM = r.cos</>-r+AM,

we find:

EM = r(cos<ft-l)+AM

COS0

Now in the special case when the incidence-point B is very

close to the vertex A of the spherical surface, the angle of in-

cidence a will be exceedingly small as will be also the angles

denoted by 6 and </> ; and if these angles expressed in radians

are all such small fractions that we may neglect their second

and higher powers, so that in place of the sines (or tangents)

we can write the angles themselves and put cos 6 = cos
<f>
=

cos a = 1. Obviously, in such a case we shall have BM = AM.
Under these circumstances the ray RB is called a paraxial

ray, sometimes also a "central" or "zero" ray, a= d = 4> = 0,

approximately.

A paraxial ray is one whose path lies very near the axis of

the spherical surface and which therefore meets this surface at

a point close to the vertex and at nearly normal incidence: the

angles denoted by a, 6 and <j> being all so small that their second

powers may be neglected.

In this chapter and for several subsequent chapters we
shall be concerned entirely with the procedure of paraxial
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Fig. 90, O.—Reflection of ray at con-

cave mirror.

rays; that is, we shall consider only such rays as are com-

prised within a very narrow cylindrical region immediately

surrounding the axis of the spherical surface which is like-

wise the axis of the cylinder. Accordingly, the only portion

of the spherical surface that will be utilized for reflection or

refraction will be a small zone whose summit is at A; so that,

so far as paraxial rays are

concerned, the rest of the

spherical surface may be

regarded as if it had no

optical existence or at any

rate as if it were opaque

and non-reflecting. Thus,

for example, the surface

might be painted over

with lampblack leaving

bare and exposed only

the small effective zone

in the* immediate vicinity of the vertex; or a screen might

be set up at right angles to the axis close to the vertex with

a small circular opening in it. Even then a source of light

lying at a considerable dis-

tance off the axis would

send rays which notwith-

standing that they were

incident near the vertex

would not be paraxial rays.

64. Reflection of Par-

axial Rays at a Spherical

Mirror.—In the accom-

panying diagrams (Fig. 90,

a and 6) the straight line

RB represents the path of

an incident ray crossing the axis of a spherical mirror ZZ at the

point M and incident on the mirror at the point B, and the

straight line BS shows the path of the corresponding re-

FlG. 90, 6.—Reflection of ray at con-

vex mirror.
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fleeted ray crossing the axis, "really" (Fig. 90, a) or "virtu-

ally" (Fig. 90, b), at the point marked M'. By the law of

reflection ZNBR= Z SBN where BN is the incidence-normal

and N designates a point on it which lies in front of the

mirror. Since the normal bisects the interior or exterior

angle at B of the triangle MBM', the following proportion

may be written

:

CM_M /C
BM BM'

#

Now if the ray RB is a paraxial ray, the letter A may be sub-

stituted in the above equation in place of B, and thus * we
obtain

:

CMM'C
AM AM''

Denoting the abscissae, with respect to the vertex A, of

the axial points M, M' by u, u', respectively, that is, putting

AM = u, AM' = u', and also, as stated in § 63, putting AC = r,

we may write:

CM =CA+AM= -r+u= u-r,

M'C =M'A+AC= -u'+r=-(u'-r);
so that, introducing these symbols in the equation above,

we obtain:

u —r_ u' — r

u u'

which may be put in the form (see § 67)

:

u u r

If, therefore, the form and dimensions of the mirror are

known (that is, if the value of r is assigned as to both mag-

nitude and sign), and if also the position of the point M
* In writing this proportion, care must be taken to see that the two

members of it shall have the same sign. For example, in each of the

diagrams in Fig. 90, as they are drawn, the segments CM and AM
have the same direction along the axis, so that for each of these figures

the ratio CM : AM is positive. Now if the ratio M'C : AM' is to be

put equal to this ratio, it must be positive also, that is, the segments

M'C and AM' in each diagram must have the same direction.
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where the incident paraxial ray crosses the axis of the

spherical mirror is given, the abscissa u' of the point M'
where the corresponding reflected ray crosses the axis may
be calculated by means of the expression:

, r.u
u =

.

2u-r
But the most noteworthy conclusion to be drawn from this

formula is the fact that, provided the rays are paraxial, their

actual slopes do not matter, for none of the angular magni-

tudes a, 6, or cf> appears in the formula; which means that

all paraxial rays which cross the axis at the point M before

reflection will cross the axis after reflection in the spherical

mirror at one and the same point M'. Thus, a homocentric

bundle of paraxial rays incident on a spherical mirror remains

homocentric after reflection. If, therefore, M designates the

position of a luminous point in front of the mirror, and if

the mirror is screened so that only such rays as proceed close

to the axis are incident on it, the bundle of reflected rays

will form at a point M' on the straight line MC an ideal

image of the luminous point M. According as the image-

point M' lies in front of the mirror (Fig. 90, a) or beyond it

(Fig. 90, 6), the image will be real or virtual, respectively.

Thus, for a real image in a spherical mirror, the value of u'

as found by the formula above will be negative, whereas

for a virtual image it will be positive.

It may be noted also that the formula is symmetrical with

respect to u and n f

, so that the equation will not be altered

by interchanging the symbols u and u'; and hence it follows

that if M' is the image of M, then likewise M may be regarded

as the image of M'. This is indeed merely an illustration of

the general law known in optics as the "principle of the

reversibility of the light-path" (§29). But the symmetry
of the equation implies more than is involved in this prin-

ciple; for it indicates that in the case of reflection object-

space and image-space coincide completely, the actual paths

of the incident and reflected rays both lying in the space in
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front of the mirror. Accordingly, an incident ray and its

corresponding reflected ray are always so related that when

either is regarded as object-ray the other will be an image-ray.

The Double Ratio of Four Points on a Straight Line

65. Definition and Meaning of the Double Ratio.—It

will be convenient and profitable at this place to turn aside

from the special problem which is here under investigation

in order to devote a few paragraphs to a brief explanation

of the simpler metrical processes of modern projective

geometry, which are of great utility in geometrical optics,

especially when we are concerned with imagery by means

of the so-called paraxial rays.

A B
•

,
1

,

C D
(ft/)

1 1

Fig. 91.—Line-segment AB divided (a) internally at

C and externally at D, and (b) internally at C
and D.

If L designates the position of a point on a straight line

determined by the two points A, B, the line-segment AB is

said to be divided at L in the ratio AL : BL. If the point L
lies between A and B, the steps (see § 45) AL and BL are

in opposite senses along the line, and the ratio AL : BL will

be negative, and in this case we say that the segment AB is

" divided internally" at L. On the other hand, if the point L
does not lie between A and B, the ratio AL : BL will be

positive, and we say that the segment AB is " divided ex-

ternally" at L.

Accordingly, if A, B, C, D (Fig. 91, a and 6) designate a
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series of four points all ranged along a straight line in any

order of sequence, the segment AB will be divided at C and

D in the ratios AC : BC and AD : BD, respectively; and

the quotient of these two ratios is called the double ratio (or

" cross ratio") of the four points A, B, C, D. This double

ratio is denoted symbolically by inclosing the four letters

ABCD in parentheses; thus, according to the above def-

inition,

where the first two letters in the parentheses mark the end-

points of the segment and the last two letters designate the

points of division. The line-segment CD is divided in the

same way by the points A and B ; for

According as the two ratios AC : BC and AD : BD have

the same sign or opposite signs, the value of the double ratio

(ABCD) will be positive or negative, respectively. Suppose,

for example, that the segment AB is divided internally at C,

as represented in both a and b of Fig. 91. Then the ratio

AC : BC will be negative. Now if AB is divided also in-

ternally at D, as in Fig. 91, a, the ratio AD : DB will likewise

be negative. Accordingly, if C and D are both points of in-

ternal division (or both points of external division), the

double ratio (ABCD) will be positive. But if one of these

points divides AB internally while the other divides it ex-

ternally (Fig. 91, b), the double ratio (ABCD) will be nega-

tive.

In order to form a clear idea of the values which (ABCD)
may assume, let us suppose that the points designated by

A, B and C in Fig. 92 represent three stationary points on a

straight line x, and that designates another fixed point not

on this line. The straight line x and the point O together

determine a plane which is the plane of the diagram. Now
let y designate a second straight line lying in this plane and
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passing through O, and let the point of intersection of the

straight lines x and y be designated by Y. And if the

straight line y is supposed to turn around as a pivot in a

sense, say, opposite to

that of the motion of the

hands of a clock, the

point Y will be a variable

point moving along the

straight line x constantly

in the same sense, namely,

in Fig. 92 from left to

Fig. 92.—Central projection from Oof the right- Assume, for ex-

point-range ABCDE lying on the ample, that the three
straight line x. ... - • k r~\ -n

stationary points A, C, B
are ranged along the straight line x from left to right in the

order named, as shown in the figure; and suppose that the

variable point Y starts originally at B, so that the revolving

line OY or y coincides initially with the "ray" marked b in

the figure and BY= BB = 0, and, consequently, the ratio

AY : BY= oo
, Hence, under these circumstances the initial

value of the double ratio of the four points A, B, C, Y will be:

/
ABcY>=i : S=°-

When the revolving ray has turned through ZBOD, where

D designates a point lying on the straight line x to the

right beyond B, the point Y will be at D outside the segment

AB and the double ratio (ABCY) will be negative, as ex-

plained above. As y continues to revolve around O, the point

Y will move farther and farther to the right along the straight

line x, until when y is parallel to x, and in the position of the

ray marked e in the figure, the point Y will then coincide

with the infinitely distant point E of the straight line x. Now
AE =BE = oo , and hence AE : BE= 1 ; and therefore when

Y is at E,
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When the revolving ray y has turned beyond the position

represented by the straight line e, the point Y which had

just vanished at one end E of the straight line x now re-

appears from the other end E, proceeding along it still in

the same sense from left to right. Thus, before the ray y

has executed a complete revolution, the point Y will pass

through A, and at this moment, AY =AA= 0, and

aBmn AC AY AC AA
(ABCY)=

BC
: BY

=
BC

:

BA
= -°°

;

and thus we see that as the point Y has traversed the straight

line x from B via the infinitely distant point E to A, the double

ratio (ABCY) has assumed all negative values from to — oo .

Finally, as the ray y completes its revolution by turning from

the position a to its initial position b, the point Y moves from

A via C to B. When Y is at C, AY= AC, BY= BC, and

(ABCY) =|§:g =+ l;

so that in passing along x from A to C, (ABCY) assumes all

positive values comprised between + oo and +1. Between

C and B, it has all positive values less than unity. Thus,

as the point Y traverses the straight line x continually in

the same sense until it has returned to its starting point,

the double ratio (ABCY) will assume all possible values

both positive and negative.

In general, since

(ABUD)
BC

: BD AD -

AC DA'DB CB ' CA '

we may write:

(ABCD) = (BADC) = (CDAB) = (DCBA).

66. Perspective Ranges of Points.—If A, B, C, etc., desig-

nate the positions of the points of a point-range x (Fig. 92)

these points are said to be " projected" from a point out-

side of x by the straight lines or "rays" OA, OB, OC, etc.;

and if these rays intersect another straight line x' (Fig. 93)

in the points A', B', C, etc., the two point-ranges x, x' are

said to be in perspective with respect to the point as center
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of perspective. The points A, A'; B, B'; C, C; etc., are

called pairs of corresponding points of the two perspective

point-ranges x, x'

.

b f

Fig. 93.—The point-ranges ABCD and A'B'C'D'
are in perspective relation with respect to the
point O as centre of perspective.

If A, B, C, D designate the positions of any four points of

x, and if A', B', C, D' designate the corresponding points

on x', then

(A'B'C'D') = (ABCD),
as we shall proceed to show.

Fig. 94.—Straight lines x, x' are bases of two point-ranges in

perspective, so that (ABCD) = (A'B'C'D').

Through the points A, B, A r and B' (Fig. 94) draw four

parallel lines AAC , BB C , A'AC
' and B'B/ meeting the ray OG
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or c in the points Ac , B c , Ac
' and B c

', respectively; and

through these same points draw four other parallel lines

AAd , BBd , A'Ad' and B'Bd
' meeting the ray OD or d in the

points Ad, Bd , Ad' and Bd ', respectively. Then, evidently,

AC =AAC AD _ AAd

BC BBC
' BD BBd

'

A'C A'AC
' A'D' A'Ad

'

hence,

B'C B'BC

'
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Four harmonic points may be denned not merely by the

metrical relation that their double ratio is equal to - 1, but

also by a geometrical relation, as we shall now show.

Let P, Q, R, S (Figs. 95 and 96) designate the positions of

\z four points lying all in

one plane, no three of

which are in the same

straight line. These

four points will deter-

mine six straight lines,

viz., PQ, PR, PS, QR,

Fig. 95.—Complete quadrilateral PQRS; QS, and RS, which are
(ABCD)=-1. called the sides Qf the

complete quadrilateral whose four vertices are at the points

P, Q, R, and S. Any two of these lines which together con-

tain all the vertices form a pair of opposite sides of the

quadrilateral. Accordingly, there are three pairs of opposite

sides, viz., PQ and RS .

which meet in a point

designated by A, PS and

QR which meet in a

point designated by B,

and QS and PR which

meet in a point desig-

nated by O. The three

points A, B and are FlG - 96.—Complete quadrilateral PQRS;

sometimes called the
secondary vertices of the quadrilateral. We shall explain now
what connection this figure has with a harmonic range of

points.

The secondary vertices A and B are determined by the

two pairs of opposite sides PQ, RS and PS, QR; and the

points C and D where the third pair of opposite sides QS
and PR meet the straight line AB divide the segment AB
harmonically. For, since A, B, C, D and P, R, O, D are in
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perspective relation with respect to the point Q as center of

perspective (§ 66), therefore

(ABCD) = (PROD).

But P, R, 0, D and B, A, C, D are also in perspective to

each other with respect to the point S as center of perspective;

consequently,

(PROD) = (BACD).

It follows therefore that

(ABCD) = (BACD).

But by the definition of the double ratio

(BACD) = .

(ABCD)

Accordingly, here we must have:

(ABCD)=
,

(ABCD)
or

(ABCD) 2 =1.

According to this equation, therefore, the double ratio

(ABCD) must be equal to +1 or —1. But we saw above

(§ 65) that the double ratio of four points A, B, C, D in a

straight line can be equal to +1 only in case one of the

points A, B is coincident with one of the pair C, D; which

cannot happen in case of the four points A, B, C, D of the

quadrilateral PQRS. Therefore, we must have here:

(ABCD)=-1;
and hence, by definition, the points A, B are harmonically

separated by the points C, D. Similarly, also, the points

P, R are harmonically separated by the points O, D.

If A, B, C, D is a harmonic range of points, then

that is,

BC =DB BA+AC _DA+AB
AC AD'

°r
AC AD

AC-ABAB-AD
AC AD
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which may finally be written in the form:11 2

AC AD A B'
an equation that is characteristic of a harmonic range of

four points A, B, C, D (c/. § 64).

68. Application to the Case of the Reflection of Paraxial

Rays at a Spherical Mirror.—When paraxial rays are re-

flected at a spherical mirror whose center is at C, we saw

(§ 64) that CM : AM = M'C : AM', where M, M' designate

the positions of a pair of conjugate points lying on a central

ray which crosses the mirror at the point marked A (Fig. 90,

a and b) ; and therefore

Consequently, the four points C, A, M, M' are a harmonic

range of points lying on the central ray AC, and we may say

that the pair of conjugate points M, M' is harmonically

separated by the center of the mirror C and the point A
where the central ray meets the mirror. Thus, if we know
the positions of three of these points, we can construct the

position of the fourth point by the aid of the properties of

the complete quadrilateral (§ 67). For example, the image-

point M' conjugate to a given point M with respect to a

spherical mirror may be constructed as follows:

Draw a straight line x (Fig. 97, a and b) to represent the

-axis of the mirror, and mark on it the positions of the three

given points, A, C and M, which may be ranged along this

line in any sequence whatever depending on the form of

the mirror and on whether the object-point M is real or

virtual. Through M draw another straight line in any con-

venient direction, and mark on it two points which we shall

call Q and S, and draw the straight lines AQ and CS meeting

in a point R and the straight lines AS and CQ meeting in a

point P. Then the straight line PR will intersect the straight

line x in the point M' which is conjugate to M with respect

to a spherical mirror whose vertex is at A and whose center
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is at C. It will be remarked that in performing this con-

struction the only drawing instrument that is needed is a

straight-edge.

Fig. 97, a.—Concave Mirror: Construction of point

M' conjugate to axial point M in front of the mirror.

If the mirror is concave, the possible sequences of these

four points on the axis are M, C, M', A; M', C, M, A; and

C, M, A, M', when the object-point M is real, and C, M',

Fig. 97, b.—Convex Mirror: Construction of point M'
conjugate to virtual object-point M on axis of mirror.

A, M, when the object-point M is virtual. In the case of a

convex mirror the points may occur in any one of the follow-

ing arrangements: M, A, M', C, when the object-point M
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FlG. a.—Focal point

mirror (AF= FC)
of

is real, and M', A, M, C; A, M, C, M' and A, M', C, M,
when the object-point M is virtual. The student should

satisfy himself as to the accuracy of these statements by

drawing a diagram for each of these eight sequences accord-

ing to the directions for the construction as given above.

Fig. 97, a shows the case of a concave mirror with the points

in the order M, C, M', A; whereas Fig. 97, b represents

a convex mirror with a

virtual object-point at M,
the order in this case be-

ing A, M, C, M'.

69. Focal Point and

Focal Length of a Spheri-

cal Mirror.—I n the
special case when the ob-

ject-point M coincides

with the infinitely distant

point E of the x-axis, the conjugate point M' will lie at a

point F' (Fig. 98, a and b) determined by the relation:

(CAEF')=-1,
and since here CE=AE= oo , we must have:

AF'=F'C.
This means that a cyl-

indrical bundle of inci-

dent paraxial rays parallel

to the axis of a spherical

mirror will be transformed

into a conical bundle of

reflected rays with its

vertex at a point F' which

is midway between the

vertex A and the center C.

If, on the other hand, the image-point M' coincides with

the infinitely distant point E, the conjugate object-point M
will He on the axis at a point F determined by the relation:

(CAFE') = - 1,

To E a*«°
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and therefore we obtain here in the same way as above:

AF = FC.

Accordingly, a conical bundle of incident rays with its

vertex at a point F midway between the vertex of the mirror

and its center will be transformed into a cylindrical bundle

of reflected rays parallel to the axis of the mirror. The
letters F and F' will be used to designate the positions of

the so-called focal points of an optical system which is sym-

metric around an axis. They are not a pair of conjugate

points, as might naturally be inferred from the fact that

they are designated by the same letter. In the case of a

spherical mirror these two points, as we have seen, are coin-

cident with each other, which is a consequence of the identity

of object-space and image-space to which reference was made
at the conclusion of § 64. The focal point of a concave mirror

lies in front of the mirror, as shown in Fig. 98, b, so that

paraxial rays parallel to the axis will be reflected at a con-

cave mirror to a real focus at F; whereas in the case of a

convex mirror the focal point F lies behind the mirror (vir-

tual focus), as shown in Fig. 98, a.

The focal length f of a spherical mirror may be defined as

the abscissa of the vertex A with respect to the focal point

F as origin; that is, /=FA. Hence, according as the mirror

is concave or convex, the focal length will be positive or negative,

respectively. It may be remarked that the signs of / and

r are always opposite, the relation between these magnitudes

being given by the following formula:

/=-^orr=-2/.

Hence, also, the abscissa-relation obtained in § 64 may be

written in terms of / instead of r as follows

:

u v! f
where, however, it must be borne in mind that, whereas the

abscissae u, u' are measured from the vertex A as origin,

the focal length / is measured from the focal point F.
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If the abscissae, with respect to the focal point F, of the

pair of conjugate axial points M, M' are denoted by x, x'
t

that is, if FM = x, FM' = x', then, since

AM = AF-f-FM, AM' = AF+FM',
the connection between the w's and the x's is given by the

following equations:

u=x-f, u' = x'-f;

and substituting these values in the formula above and

clearing of fractions, we derive the so-called Newtonian

formula, viz.:

x.x'=f;
which is an exceedingly simple and convenient form of the

abscissa-relation between a pair of conjugate axial points.

The right-hand side of this equation is essentially positive,

and hence the abscissae x, x r must always have like signs.

Consequently, in a spherical mirror the conjugate axial points

M, M' lie always both on the same side of the focal point F.

70. Graphical Method of exhibiting the Imagery by

Paraxial Rays.—The points M, M' in Fig. 99, a and b desig-

Fig. 99, a.—For paraxial rays the reflecting (or

refracting) surface must be represented in diagram
by the straight line Ay, not by the curved line AZ.

nate the positions on the axis of a spherical mirror of a pair

of conjugate points constructed according to the method

explained in § 68. On the reflecting sphere ZZ take a point

D, and draw the straight lines MD, M'D meeting the tan-
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gent Ay in the plane of these lines in the points B, G, re-

spectively. Also, draw the straight line M'B. Now if the

point D were very close to the vertex A of the mirror, then

the straight line MD would represent the path of an incident

Fig. 99, b.—For paraxial rays the reflecting (or

refracting) surface must be represented in diagram
by the straight line Ay, not by the curved line AZ.

paraxial ray crossing the axis at M, and the path of the

corresponding reflected ray would be along the straight line

DM'. But under these circumstances, the three points

designated here by the letters D, B, G would all be so near

together that even when we cannot regard D as absolutely

coincident with A, we may consider D, B and G as all coin-

cident with one another. Therefore, when the ray is paraxial,

we may, and, in fact, in the diagram we must, regard the

straight line BM' as showing the path of the reflected ray.

It is quite essential that this point which is seldom clearly

explained should be rightly apprehended by the student. In

diagrams showing the imagery by means of paraxial ra3rs

the duty of the straight lines that are drawn is not primarily

to represent the actual paths of the rays themselves but to

locate by their intersections the correct positions of the pairs

of corresponding points in the object-space and image-space.

In the construction of such diagrams, a practical difficulty
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is encountered due to the fact that, whereas in reality par-

axial rays are comprised within the very narrow cylindrical

region immediately surrounding the axis of the spherical

surface (§ 63), it is obviously quite impossible to show them

this way in the figure, because it would be necessary to take

the dimensions of the drawing at right angles to the axis

so small that magnitudes of the second order of smallness

would no longer be perceptible at all; thus, for example, the

points B, D, G in Fig. 99 would have to be shown as one

point. On the other hand, if the lines in the diagram are

not all drawn close to the axis, the relations which have been

found above will cease to be applicable, so that, for instance,

the rays shown in such a drawing would not intersect in the

places demanded by the formulae.

Accordingly, in order to overcome this difficulty, a method

of constructing these figures has been very generally adopted,

which, although it is confessedly in the nature of a com-

promise, has been found to be on the whole quite satisfactory,

and wherein at any rate the geometrical relations are in

agreement with the algebraic conditions, which is the essen-

tial requirement. In this plan, while the dimensions parallel

to the axis remain absolutely unaltered, the dimensions at

right angles to the axis are all prodigiously magnified in the

same proportion. Thus, for example, if the incidence-height

h= ~DB (Fig. 89) is a small magnitude of the order, say, of

one-thousandth of the unit of length, it will be shown in

the figure magnified a thousand times; whereas another or-

dinate whose height was only one one-millionth of the unit

of length and which, therefore, would be of the second order

of smallness as compared with h, would appear even in the

magnified diagram as a magnitude of the first order of small-

ness. And if the ordinate denoted by h, although in reality

infinitely small, is represented in the drawing by a line of

finite length, an ordinate of the second order of smallness

as compared with h will be entirely unapparent in the

magnified diagram.
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Of course, as already intimated, one effect of this lateral

enlargement will be to misrepresent to some extent the rela-

tions of the lines and angles in the figure. For instance, the

circle in which the spherical mirror (or refracting surface)

is cut by the plane of a meridian section will thereby be

transformed into an infinitely elongated ellipse with its

major axis perpendicular to the axis of the spherical surface,

and this ellipse will appear in the diagram as a straight line

Ay tangent to the circle at A. The minor axis of the ellipse

remains unchanged and equal to the diameter 2r of the circle,

and moreover the center of the ellipse remains at the center C
of the circle. But the most apparent change will be in the

angular magnitudes which will be completely altered and

distorted. For example, every straight line drawn through

the center C really meets the circle ZZ (Fig. 89) normally,

but in the distorted figure the axis of symmetry will be the

only one of such lines which will be perpendicular to the

straight line Ay which takes the place of the circular arc ZZ.

Angles which in reality are equal will appear unequal, and

vice versa. However—and after all this is the really essential

matter

—

the absolute dimensions of the abscissa? and the rela-

tive dimensions of the ordinates will not be changed at all; and

therefore lines which are really straight will appear as

straight lines in the figure, and straight lines which are

parallel will be shown as such. The abscissa of the point of

intersection of a pair of straight lines in the drawing will be

the true abscissa of this point.

In such a diagram, therefore, any ray, no matter what

slope it may have nor how far it may be from the axis, is to

be considered as a paraxial ray. The meridian section of

the spherical reflecting or refracting surface must be repre-

sented in the figure by the straight fine Ay (?/-axis), and the

position of the center C with respect to the vertex A will

show whether the surface is convex or concave.

71. Extra-Axial Conjugate Points.—If we suppose that the

axis of the spherical mirror is rotated about the center C
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through a small angle ACU, so that the vertex A moves

along the mirror to a neighboring point U, the conjugate

axial points M, M' will describe also small arcs MQ, M'Q'

of concentric circles; and, evidently, the points Q, Q' will be

A x

Fig. 100.—Concave mirror: Object is a small line MQ perpendicular to

axis; its image M'Q' is real and inverted.

harmonically separated (§§67, 68) by the points C, U, so that

(CUQQO = (CAMM') = - 1. Thus, we see how the point Q'

is the image-point conjugate to the extra-axial object-point Q.

In the diagram (Fig. 100) the circular arcs AU, MQ and

M'Q' will appear as straight lines perpendicular to the axis, as

explained in § 70. We derive, therefore, without difficulty

the following conclusions:

(1) Th image, in a spherical mirror, of a plane object per-

pendicular to the axis is likewise a plane perpendicular to the

axis; (2) A straight line passing through the center of the

spherical mirror intersects a pair of such conjugate planes in a

pair of conjugate points; and (3) To a homocentric bundle of

incident paraxial rays proceeding from a point Q in a plane

perpendicular to the axis of a spherical mirror there corre-
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sponds a homocentric bundle of reflected rays with its vertex Q'

lying in the conjugate image-plane.

In order to construct the image-point Q' of the extra-axial

object-point Q, we have merely to find the point of inter-

section after reflection at the spherical mirror of any two

Fig. 101, a.—Lateral magnification and construction of image in

concave mirror.

rays emanating originally from Q. The diagrams (Fig. 101,

a and b) , which are drawn according to the method explained

in § 70, exhibit this construction for the cases when the mirror

is concave and convex. Of the incident rays proceeding

from Q, it is convenient to select for this purpose two of the

following three, namely: the ray QC which proceeding to-

wards the center C meets the spherical mirror normally at

U, whence it is reflected back along the same path; the ray

QV which proceeding parallel to the axis and meeting the

mirror in the point designated by V is reflected at V along

the straight line joining V with the focal point F; and the

ray QW which being directed towards the focal point F is

reflected at W in a direction parallel to the axis. The point

where these reflected rays intersect will be the image-
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point Q'. Moreover, having located the position of Q', we

can draw QM, Q'M' perpendicular to the axis at M, M', re-

spectively; and then M'Q' will be the image of the small

object-line MQ. In Fig. 101, a the image M'Q' is real and

inverted, whereas in Fig. 101, b it is virtual and erect.

;\\f ^ c

ir

Fig. 101, b.—Lateral magnification and construction of image in convex
mirror.

Whether the image is real or virtual and erect or inverted

will depend both on the position of the object and on the

form of the mirror.

If the object-point Q is supposed to move, say, from left

to right along the straight line QV drawn parallel to the

axis of the mirror, the corresponding image-point Q' will

traverse the straight line VF continuously in the. same

direction. Thus, in the diagrams (Fig. 102, a & b) the

numerals 1, 2, 3, etc., ranged in order from left to right along

a straight line parallel to the axis of the mirror, show a

number of successive positions of the object-point, while the

primed numbers 1', 2', 3', etc., lying along the straight line

VF, show the corresponding positions of the image-point.

The straight lines 11', 22', 33', etc., all meet at the center

C of the mirror.
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mirror.
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72. The Lateral Magnification.—If the ordinates of the

pair of extra-axial conjugate points Q, Q' are denoted by

y, y', respectively, that is, if in Fig. 101, a and b, MQ= y,

M'Q' = y', the ratio y'jy is called the lateral magnification at

the axial point M. This ratio will be denoted by y; thus,

y = y'jy. The sign of this function y indicates whether the

image is erect or inverted. The lateral magnification may
have any value positive or negative depending only on the

position of the object.

In the similar triangles MCQ, M'CQ'

M'Q' :MQ=M'C:MC;
and since

M'C = r-u', MC = r-u,

where u=AM, u' = AM', r= AC; and since according to the

abscissa-formula (§ 64)

r-u' _ v!

r—u u

we derive the following formula for the lateral magnification

in the case of a spherical mirror:

V u

Also, from the figure we see that

M'Q' _AW _ FA _ M'Q' _ FM'

,

~MQ~MQ"FM AV FA'

and since FM = z, FM'= z r

, and FA=/, we derive also an-

other formula for the lateral magnification, as follows:

y
y x f

This expression shows that the lateral magnification is in-

versely proportional to the distance of the object from the

focal plane.

73. Field of View of a Spherical Mirror.—When the

image of a luminous object is viewed in a spherical mirror,

the axis of the mirror is determined by the straight line O'C
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(Fig. 103, a and b) joining the center O' of the pupil of the

observer's eye with the center C of the mirror; and, on the

assumption that the image is formed by the reflection of

paraxial rays, the actual portion of the mirror that is utilized

Fig. 103, a.—Field of view for eye in front of convex mirror.

consists of a small circular zone immediately surrounding

the vertex A where the axis meets the reflecting surface. Ac-

cording to the method of drawing these diagrams which was

described in § 70, the line-segment GH which is perpendicu-

lar to the axis at A and which is bisected at A will represent

a meridian section of this zone in the plane of the figure, so

that the points designated by G, H are opposite extremities

of a diameter of the effective portion of the mirror.

All the reflected rays that enter the eye at O' must neces-

sarily lie within the conical region determined by revolving

the isosceles triangle O'GH around the axis of the mirror.
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The outermost rays that can possibly be reflected into the eye

at O' will be the rays that are reflected along the straight

lines HO' and GO'. In order to see a real image in a concave

mirror (Fig. 103, 6), the eye must be placed in front of the

Fig. 103, b.—Field of view for eye in front of concave mirror.

mirror at a distance greater than the length of the radius.

The incident rays corresponding to the extreme reflected

rays will intersect in a point O which is conjugate to 0';

and hence the field of view (§ 9) within which all object-points

must lie in order that their images in the mirror may be

visible to an eye at O' will be limited by the surface of a

right circular cone generated by the revolution of the isosceles

triangle OHG around the axis of the mirror. Thus, exactly

as in the case of the corresponding problem in connection

with the field of view of a plane mirror (§ 16), the contour of

the effective portion of the spherical mirror acts also as a

field-stop for the imagery produced by paraxial rays.

Through O r draw B'J' at right angles to the axis of the

mirror, and mark the points B', J' at equal distances from
0' on opposite sides of the axis. Then B'J' may be supposed

to represent the diameter in the plane of the diagram of the

iris opening of the pupil of the observer's eye. Construct

by the method described in § 71, the object-line BJ whose

image in the mirror is B'J'. Evidently, any ray which after
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reflection enters the pupil of the eye between B' and J' must

before reflection have passed, really or virtually, through

the conjugate point on the straight line between B and J.

In fact, the circle described around as center in the trans-

versal plane perpendicular to the axis at with radius OB
will act like a material stop to limit the apertures of the

bundles of incident rays. It is the so-called entrance-pupil

of the system, while the pupil of the eye plays the part of

the exit-pupil (see § 16). Thus, for example, if S designates

the position of a luminous point lying anywhere within the

field of view, the eye at O' will see the image of S at S' by

means of a bundle of rays which are drawn from S to all points

of the entrance-pupil and which after reflection at the

mirror are comprised within the cone which has its vertex

at S' and the exit-pupil as base. The entrance-pupil BJ is

the aperture-stop of the system (§ 11).

74. Refraction of Paraxial Rays at a Spherical Surface.—
In the accompanying diagrams Fig. 104, a and b, the straight

line RB represents an incident ray meeting the spherical

refracting surface ZZ at B, while the straight line BS shows

Fig. 104, a.—Convex spherical refracting surface (n'>n).

the path of the corresponding refracted ray. If the position

of the point M where the incident ray crosses the axis is

given, the problem is to determine the position of the point

M' where the refracted ray meets the axis. The angles of



180 Mirrors, Prisms and Lenses [§ 74

incidence and refraction are ZNBR=a, ZN'BS= a', and

by the law of refraction

:

n'.sina'= n.sina,

where n, nf denote the indices of refraction of the first and

second media, respectively. In the triangles MBC, M'BC,
we have:

CM : BM = sina : sin0, CM' : BM' = sina' : sin0,

Fig. 104, b.—Concave spherical refracting surface {nf > n) .

where $ = ZBCA. Dividing one of these equations by the

other, we obtain:

CM .BM _n'

CM'
:

BM' n
'

Now if the ray RB is a paraxial ray, the incidence-point B
will be so near the vertex A of the spherical refracting surface

that A may be written in place of B, according to the def-

inition of a paraxial ray as given in § 63. Therefore, in the

case of the refraction of paraxial rays at a spherical surface

the four points C, A, M, M' on the axis are connected by

the following relation

:

CM .AM _n'

CM,: AM' n
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which may be written (§ 65)

:

(CAMM')=-;
n

that is, the double ratio of the four axial points C, A, M, M'

is constant and equal to the relative index of refraction from

the first medium to the second.

Thus, for a given spherical surface (that is, for known

positions of the points A and C) , separating a pair of media

of known relative index of refraction (n'/ri), the point M'
on the axis corresponding to a given position of the axial

point M has a perfectly definite position, entirely independent

of the actual slope of the incident paraxial ray RB; whence

it may be inferred that M' is the image of M, so that to a

homocentric bundle of incident paraxial rays with its vertex

lying on the axis of the spherical refracting surface there corre-

sponds also a homocentric bundle of refracted rays with its

vertex on the axis.

In Fig. 104, a the image at M r
is real, whereas in Fig. 104, 6

it is virtual. Since the relative index of refraction is never

less than zero, the value of the double ratio (CAMM') in

the case of refraction at a spherical surface is necessarily

positive; consequently, the pair of conjugate points M, M'
is not "separated" (§ 65) by the pair of points A, C, as was

found to be the case in reflection at a spherical mirror (§ 68)

.

Thus, if M, M' designate the positions of a pair of conjugate

axial points with respect to a spherical refracting surface, it

is always possible to pass from M to M' along the axis one

way or the other without going through either of the points

A or C, although in order to do this it may sometimes be

necessary to pass through the infinitely distant point of the

axis (see § 65) . Accordingly, depending only on the form

of the surface and on whether n is greater or less than n',

there will be found to be sixteen possible orders of arrange-

ment of these four points, viz.:

A, C, M, M'; A, C, M', M; A, M, M', C; A, M', M, C;

M, A, C, M'; M', A, C, M; M, M', A, C; M', M, A, C;
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together with the eight other arrangements obtained by re-

versing the order of the letters in each of these combinations;

in other words, exactly the series of combinations that are

not possible in the case of a spherical mirror where the pair

of conjugate axial points M, M' is harmonically separated

by the pair of points A, C, so that (CAMM') = -1 (§ 68).

The student should draw a diagram similar to Fig. 104 for

each of the possible arrangements of the four points above

mentioned. Fig. 104, a shows the case M, A, C, M' and

Fig. 104, b shows the case M, M', C, A.

Moreover, if (CAMM')=w'/n, then also (CAM'M) =
ft/ft', as follows from the definition of the double ratio (§ 65).

Consequently, if a paraxial ray is refracted at a point B of

a spherical surface from medium n to medium n' along the

broken line RBS, a ray directed from S to B will be refracted

from medium nf

to medium n in the direction BR; which is

in accordance with the general principle of the reversibility

of the light-path (§ 29). If therefore M' is the image of M
when the light is refracted across the spherical surface in a

given sense, then also M will be the image of M' when the

refraction takes place in the reverse sense.

75. Reflection Considered as a Special Case of Refrac-

tion.—It was implied above that if it were possible for the

ratio n'/n to have not only positive values but also the unique

negative value —1, the single formula (CAMM.')=n'ln

would express the relation between a pair of conjugate axial

points M, M' both for a spherical refracting surface and

for a spherical mirror. The question naturally arises, there-

fore, Is there a general rule of this kind applicable also to

other problems in optics that are not necessarily concerned

with paraxial rays or particular conditions? Returning to

fundamental principles and recalling the laws of reflection

and refraction, we observe that while the angles of incidence

and refraction always have like signs, the angles of incidence

and reflection, on the contrary, have opposite signs. In

order, therefore, that the refraction-formula nf
. sina' = n . sina
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may include also the law of reflection as well, the values

of n and n' in the latter case must be such that a'= — a

is a solution of the equation in question; and obviously this

solution can be obtained only by putting

n = —n, or — = — 1.
n

Accordingly, the rule discovered above to be true in a special

case is found to be entirely general, so that, at least from a

purely mathematical point of view, the reflection of light

may be regarded as a particular case of refraction back again

into the medium of the incident light, provided we assign to

this medium two equal and opposite values of the absolute

index of refraction. The convenience of this artifice is ap-

parent, since it makes it quite unnecessary to investigate sep-

arately and independently each special problem of reflection

and refraction; for when in any given case the relation be-

tween an incident ray and the corresponding refracted ray

has been ascertained, it will be necessary merely to impose

the condition n'= —n in order to derive immediately the

analogous relation between the incident ray and the corre-

sponding reflected ray. Thus, for example, any formula

hereafter to be derived concerning the refraction of paraxial

rays at a spherical surface may be converted into the corre-

sponding formula for the case of a spherical mirror by

putting n'= —n.

76. Construction of the Point M' Conjugate to the Axial

Point M.—In order to construct the point M' conjugate to

the axial point M with respect to a spherical refracting sur-

face, we may proceed as follows

:

Through the vertexA (Fig. 105, a, b, c and d) and the center

C draw a pair of parallel straight lines (preferably but not

necessarily) at right angles to the axis; and on the line going

through C take two points and O' such that

CO:CO' = n':n.

Join the given axial point M by a straight line with the point

O, and let B designate the point where this straight line,
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R M

Fig. 105.—Spherical refracting surface: Construction of image-point M'
conjugate to axial object-point M; construction of focal points F, F\
(a) Convex surface, n'>n; order MACM'.
(6) Concave surface, n'>n; order MM'CA.
(c) Convex surface, n' <n; order MM'AC.
(d) Concave surface, n'<n; order MCAM'.
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produced if necessary, meets the line drawn through A
parallel to CO; then the required point M' will be at the

place where the straight line BO', produced if necessary,

intersects the axis.

The straight line Ay drawn perpendicular to the axis at A
will be tangent to the spherical surface at its vertex ; and this

line will represent the spherical surface in the diagram, since

we are concerned here only with paraxial rays (§ 70) . Thus,

to the incident ray RB crossing the axis at M and incident

on the surface at B, there will correspond the refracted ray

BS crossing the axis at M'.

The proof of the construction consists in showing that

n'
the double ratio (CAMM') is equal to — , in accordance with

n

the relation which, as we saw above (§ 74), connects the two

conjugate points M, M'.

In the pair of similar triangles CMO, AMB,
CM:AM = CO:AB;

and in the pair of similar triangles CM'O', AM'B,

AM':CM' = AB:CO'.
Multiplying these two proportions, we obtain:

CM AM' CO

or

and hence

CM' * AM CO'

'

CM AM n'

CM' AM' n

(CAMM') = -.
n

The diagrams illustrate four cases, viz., the cases when
the points A, C, M, M' are ranged along the axis from left

to right in the orders MACM', MM'CA, MM'AC and

MCAM'. In the diagrams Fig. 105, a and 6, the second

medium is represented as more highly refracting than the
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first (n'>n), whereas in the two other diagrams Fig. 105,

c and d, the opposite case is shown (n'<ri); in a and c the

surface is convex, and in b and d it is concave.

77. The Focal Points (F, F') of a Spherical Refracting

Surface.—The object-point F which is conjugate to the in-

finitely distant image-point E and the image-point F' which

is conjugate to the infinitely distant object-point E of the

axis are the so-called focal points of the spherical refracting

surface. A conical bundle of incident paraxial rays with its

vertex at the primary focal point F will be converted into a

cylindrical bundle of refracted rays all parallel to the axis

and meeting therefore in the infinitely distant point E of

the axis; and, similarly, a cylindrical bundle of paraxial rays

proceeding from the infinitely distant point E of the axis

will be transformed into a conical bundle of refracted rays

with its vertex at the secondary focal point F'.

According to the method explained in § 76, the focal point

F may be constructed by drawing the straight line O'H
(Fig. 105, a, b, c and d) through 0' parallel to the axis meeting

the straight line AB in the point designated by H; and then

the straight line OH will intersect the axis in the primary focal

point F. Similarly, if the straight line OK is drawn through

O parallel to the axis meeting AB in a point K, the point of

intersection of the straight line KO' with the axis will de-

termine the position of the secondary focal point F'. In

brief, the diagonals of the parallelogram OO'HK meet the

axis in the focal points F, F'. The spherical refracting surface

is said to be convergent or divergent according as the focal

point F' is real or virtual, respectively. Thus, in the dia-

grams Fig. 105, a and d, incident rays parallel to the axis are

brought to a real focus at F', so that the surface is convergent

for each of these cases; whereas in the diagrams Fig. 105,

b and c, incident rays parallel to the axis are refracted as if

they proceeded from a virtual focus at F'.

Moreover, certain characteristic metric relations may be

derived immediately from the diagrams Fig. 105, a, 6, c, and d.
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For example, in the two pairs of similar triangles FAH, HO'O
and F'CO', O'HK, we obtain the proportions:

FA : HO' =AH : O'O, CF' : HO 7 = CO' : HK,
and since CO' = AH, HK= 0'0, we find:

FA = CF';

and hence also

:

F'A= CF.

Accordingly, concerning the positions of the focal points of

a spherical refracting surface we have the following rule:

The focal points of a spherical refracting surface lie on the

axis at such places that the step from one of them to the center

is identical with the step from the vertex to the other focal point.

- This statement should be verified for each of the diagrams.

Not only will the center C be seen to be at the same distance

from the primary focal point as the secondary focal point is

from the vertex A, but the direction from F to C will always

be the same as that from A to F'.

This relation may also be expressed in a different way;

for, since

FA= CF'= CA+AF',
we have the following equation

:

FA-f-F'A = CA; or AC = AF+AF';
which may be put in words by saying that the step from the

vertex to the center of a spherical refracting surface is equal to

the sum of the steps from the vertex to the two focal points.

And, finally, since in the pair of similar triangles FAH,
FCO, we have:

FC:FA=CO:AH=CO:CO'=n':w,
and since FC= —CF= — F'A, we obtain also another useful

and important relation, viz.

:

F'A__n'
FA n

'

and, consequently: The two focal points F, F' of a spherical

refracting surface lie on opposite sides of the vertex A, and at

distances from it which are in the ratio of n to n f
. If, there-

fore, we are given the positions of one of the two focal points,
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AIR / GLASS

w

Fig. 106, a, b, c and d.—Focal points of spherical refracting surface sep-

arating air, of index 1, and glass, of index 1.5.

(a) Refraction from air to glass at convex surface.

(6) " " " " " concave "

(c) " glass to air " convex "

(d) " " " " " concave "
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F or F', as well as the positions of the points A, C which de-

termine the size and form of the spherical surface, we have

all the data necessary to enable us to locate the point M'
conjugate to a given axial object-point M. For we can

locate the position of the other focal point and thus determine

the value of the ratio n' : n.

Whether the secondary focal point will lie on one side or

the other of the spherical refracting surface, that is, whether

the surface will be convergent or divergent, will depend on

each of two things, viz.: (1) Whether the surface is convex

or concave, and (2) Whether n' is greater or less than n. For

example, if the rays are refracted from air to glass (n'/n=

3/2), according to the above relations we find that AF= 2 CA,

AF' = 3 AC ; so that starting at the vertex A and taking the

step CA twice we can locate the primary focal point F; and

returning to the vertex A and taking the step AC three

times, we arrive at the secondary focal point F\ The dia-

grams Fig. 106, a and b, show the positions of the focal points

for refraction from air to glass for a convex surface and for

a concave surface. In this case the convex surface is con-

vergent and the concave surface is divergent. On the other

hand, when the light is refracted from glass to air (n'/n=

2/3), we find AF= 3 AC, AF' = 2 CA (Fig. 106, c and d), and

in this case the concave surface is convergent and the convex

surface is divergent.

In conclusion, it may be added that the constructions and

rules which have been given above for the case of a spherical

refracting surface are entirely applicable also to a spherical

mirror. In fact, here we have an excellent illustration of

the method of treating reflection as a special case of refrac-

tion, which was explained in § 75. For if we take n'= -n,

the two points O, 0' (Fig. 107, a and b) will lie on a straight

line passing through the center C of the mirror at equal dis-

tances from C in opposite directions. The point M' con-

jugate to the axial object-point M and the focal points F,

F' will be found precisely according to the directions for
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center C and the pair of conjugate axial points M, M', that

is, if AC = r, AM= u, AM' = u', then

CM = CA+AM = u-r, CM' = CA+AM' = u'- r;

n'
and since the formula (CAMM /

) =— may evidently be

written as follows:

, CM'_ CM
n

AM'
n
AM'

we obtain

u —r_ u—r
u u

Dividing both sides by r, we derive the so-called invariant

relation in the case of refraction of paraxial rays at a spherical

surface, in the following form:

.f.-iy-.p-!).
\r ul \r ul

Usually, however, this equation is written as follows:

-, = -+
u u r

which is to be regarded as one of the fundamental formulae of

geometrical optics. If the two constants r and n'/n are known,

the abscissa u' corresponding to any given value of u may
easily be determined. Putting n' = — n (§ 75), we obtain the

abscissa-formula for reflection of paraxial rays at a spherical

mirror (§ 64) ; and if we put r= oo , we derive the formula

—,= - for the refraction of paraxial rays at a plane surface

(§41). It is because this linear equation connecting the

abscissae of a pair of conjugate axial points includes these

other cases also that some writers have proposed that the

formula above should be called the characteristic equation of

paraxial imagery.

79. The Focal Lengths f, f of a Spherical Refracting

Surface.—The steps from the focal points F and F' to the vertex
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A are called the focal lengths of the spherical refracting surface;

the primary focal le?igth, denoted by f, is the abscissa of A with

respect to F (/=FA), and the secondary focal length, denoted

by f, is the abscissa of A with respect to F'(/' = F'A).

Since FA+F'A= CA (§ 77), and since CA= -r, the focal

lengths and the radius of the surface are connected by the

following relation:

f+f'+r=0,

and hence if two of these magnitudes are known, the value

of the third may always be determined from the fact that their

algebraic sum is equal to zero. For example, starting at any

point on the axis and taking in succession in any order the

three steps denoted by /, /' and r, one will find himself at

the end of the last step back again at the starting point.

Moreover, the focal lengths are connected with the indices

of refraction by the following relation (§ 77)

:

V n'J-=--orn.f'+n'.f=0;
f n

and, hence, the focal lengths of a spherical refracting surface

are opposite in sign and in the same numerical ratio as that of

the indices of refraction. This formula, as we shall see (§ 122),

represents a general law of fundamental importance in geo-

metrical optics.

Expressions for the focal lengths in terms of the radius

r and the relative index of refraction {n! : n) may be derived

immediately from the pair of simultaneous equations above

by solving them for / and /'. The same expressions may
likewise be easily obtained by substituting in succession in

the abscissa-formula (§ 78) the two pairs of corresponding

values, viz., u= —/, u'= go and w=oo, u'=—f. And,

finally, they may also be obtained geometrically from one of

the diagrams of Fig. 107 by observing that, since by con-

struction CO : CO' — n'\n, it follows that

CO': 0'0 = n: {n'-n), CO: 0'0 = n': (n'-n).
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Now from the two pairs of similar triangles FAH, HO'O and

F'AK, O'HK we obtain the two proportions:

FA: HO' = AH: O'O, F'A: 0'H = AK: HK;
and since

FA=/, HO' =AC = r, AH = CO', F'A=/', AK= CO, and

HK = 0'0,

we have, finally:

,_ n „ n'
J n'-n

Tl J n'-n'
T'

which are exceedingly useful forms of the expressions for the

focal lengths.

Since

n n'— n n f

f r f"

the abscissa-relation connecting u and v! may be expressed

in terms of one of the focal lengths instead of in terms of the

radius r, for example, in terms of the focal length/, as follows:

n'_n.n
u u f

80. Extra-Axial Conjugate Points ; Conjugate Planes of a

Spherical Refracting Surface.—If the axis AC of a spherical

refracting surface is revolved in a meridian plane through

a very small angle about an axis perpendicular to this plane

at the center C, so that the vertex of the surface is displaced

a little to one side of its former position A to a point U on

the surface, the pair of conjugate points M, M' will likewise

undergo slight displacements into the new positions Q, Q';

and, evidently, the same relation will connect the four points

C, U, Q, Q' on the central line UC as exists between the four

points C, A, M, M' on the axis AC, and accordingly (§ 76)

we may write:

(CUQQ')=£';
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and hence it is obvious that the points Q, Q' are a pair of

extra-axial conjugate points with respect to the spherical

refracting surface. Thus, if the points belonging to an ob-

ject are all congregated in the immediate vicinity of the axis

on an element of a spherical surface which is concentric with

the refracting sphere, the corresponding image-points will

all be assembled on an element of another concentric spherical

surface, and any straight line going through C will determine

by its intersections with this pair of concentric surfaces two

conjugate points Q, Q'. In order that the rays concerned

may all be incident near the vertex A, it is necessary

to assume that ZUCA is very small, which means that

the little elements of the surfaces described around C may
in fact be regarded as plane surfaces perpendicular to the

axis AC. Accordingly, the imagery produced by the re-

fraction of paraxial rays at a spherical surface may be de-

scribed by the following statements:

(1) The image of a plane object perpendicular to the axis

of a spherical refracting surface is similar to the object, and

will lie likewise in a plane perpendicular to the axis; (2) A
straight line drawn through the center C will intersect a pair of

conjugate planes in a pair of conjugate points Q, Q'; and (3)

Incident rays which interesct in Q will be transformed into

refracted rays which intersect in Q'.

Diagrams showing the refraction of paraxial rays at a

spherical surface should be drawn therefore according to the

plan explained in § 70, as has been already stated. The
spherical refracting surface must be represented in the figure

by the plane tangent to the surface at its vertex A, whose

trace in the meridian plane of the drawing is the straight

line Ay which is taken as the y-axis of the system of rect-

angular coordinates whose origin is at A (§ 63).

81. Construction of the Point Q' which with Respect to a

Spherical Refracting Surface is Conjugate to the Extra-

axial Point Q.—The point Q' conjugate to the extra-axial

point Q is easily constructed. Having first located the focal
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points F, F' (§ 77), we draw through Q (Figs. 108 and 109) a

straight line parallel to the z-axis meeting the y-axis in the

point designated by V; then the point of intersection of the

Fig. 108.—Spherical refracting surface: Lateral magnification and
construction of image. Convex surface, n'> n.

straight lines VF' and QC will be the required point Q'.

A third line may also be drawn through Q, viz., the straight

line QF meeting the y-axis in the point marked W; and if a

Fig. 109.—Spherical refracting surface: Lateral magnification and
construction of image. Concave surface, n'>n.

straight line is drawn through W parallel to the x-axis, it

will likewise pass through Q'.

If M, M' designate the feet of the perpendiculars let fall
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from Q, Q' respectively, on the z-axis, then M'Q' will be

the image of the small object-line MQ. In Fig. 108, which

represents the case of a convex refracting surface, the image

is real and inverted, whereas in Fig. 109 the surface is

concave and the image is virtual and erect. Both diagrams

are drawn for the case when n'>n.

If the object-point Q coincides with the point marked V,

the image-point Q' will also be at V, and image and object

will be congruent. The pair of conjugate planes of an optical

system for which this is the case are called the principal

planes (see § 119); and hence the principal planes of a spher-

ical infracting surface coincide with each other and are identical

with the tangent-plane at the vertex.

82. Lateral Magnification for case of Spherical Refract-

ing Surface.—The ratio M'Q': MQ (Figs. 108 and 109) is the

so-called lateral magnification of the spherical refracting sur-

face with respect to the pair of conjugate axial points M, M'.

Since



§ 83] Spherical Refracting Surface: Focal Planes 197

83. The Focal Planes of a Spherical Refracting Surface.

—The focal planes are the pair of planes which are perpendic-

ular to the axis at the focal points F, F'. "The infinitely

distant plane of space/' which, according to the notions of

the modern geometry, is to be regarded as the locus of the

infinitely distant points (§ 65) of space, is the image-plane

conjugate to the primary focal plane, which is the plane

perpendicular to the axis at F. On the other hand, re-

garded as belonging to the object-space, the infinitely dis-

tant plane is imaged by the secondary focal plane perpendicu-

lar to the axis at F'.

The rays proceeding from an infinitely distant object-point

I (Fig. 110) constitute a cylindrical bundle of parallel in-

Toj'at <*>

Fig. 110.—Focal planes and focal lengths of spherical refracting surface.

cident rays. Since I lies in the infinitely distant plane of

space, its image V will be formed in the secondary focal

plane, and the position of V in this plane may be located by

drawing through the center C of the spherical refracting

surface a straight line parallel to the system of parallel

rays which meet in the infinitely distant point I. Thus, for

example, the image of a star which may be regarded as a

point infinitely far away will be formed in the secondary

focal plane ; and if the apparent place of the star in the firma-

ment is in the direction CI, the star's image will be at the
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point I' where the straight line CI meets the secondary focal

plane.

Similarly, if J designates the position of an object-point

lying in the primary focal plane, its image J' will be the in-

finitely distant point of the straight line JC. Thus, to a

homocentric bundle of incident paraxial rays with its vertex in

the primary focal plane, there corresponds a cylindrical bundle

of refracted rays; and to a cylindrical bundle of incident paraxial

rays there corresponds a homocentric bundle of refracted rays

with its vertex in the secondary focal plane.

The directions of the infinitely distant points I and J' are

given by assigning the values of the slope-angles

= ZFCI = ZF'CP, 0' = ZFCJ = ZF'CJ';

and the points I' and J conjugate to them will lie in the sec-

ondary and primary focal planes on straight lines passing

through the center C and inclined to the axis at the angles

6 and 0', respectively. The angle 0, which is the measure

of the angular distance from the axis of the infinitely distant

object-point I, determines the apparent size of an object

in the infinitely distant plane of the object-space; and, sim-

ilarly, the angle 0' is the measure of the apparent size of the

infinitely distant image of the object FJ.

Draw the straight lines JG and FK paralled to the optical

axis and meeting the ?/-axis in the points designated by G
and K, respectively; then the straight lines FK and CP will

be parallel to each other, and the same will be true with

respect to the straight lines GF' and JC. Hence,

ZAFK= 0, ZAF'G = 0'; and since AK=FT and AG = FJ,

we find:

|l=tan0,!^= tan0'.

Putting FA=/ and F'A=/' (§79), we obtain the following

expressions for the focal lengths:

FT FJ/•=__, /'= .

tan tan 6'
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and since the tangents of the small angles 8, 8' are indis-

tinguishable from the angles themselves (see § 63) , we obtain

new definitions of the focal lengths, as follows:

The primary focal length is the ratio of the height of the image,

in the secondary focal plane, of an infinitely distant object to

the apparent size of the object; and the secondary focal length

is the ratio of the height of an object in the primary focal plane

to the apparent size of the infinitely distant image.

The ratio of the apparent size of the infinitely distant

image to the height of an object in the primary focal plane

is a measure of the magnifying power of the optical system

(see § 158), and in this sense we may say that the magnifying

power of a spherical refracting surface is equal to the reciprocal

of the secondary focal length.

84. Construction of Paraxial Ray Refracted at a Spherical

Surface.—The refracted ray corresponding to a paraxial ray

IB (Fig. 110) incident on a spherical refracting surface at

the point B may easily be constructed, for example, in one

of the following ways:

(a) Through the primary focal point draw the straight

line FK parallel to IB meeting the y-axis in the point K ; and

through K draw a straight line parallel to the z-axis meeting

the secondary focal plane in the point I'; the path of the

refracted ray will lie along the straight line BI'.

(b) Through the center C draw a straight line CI' parallel

to the given incident ray meeting the secondary focal plane

in the point I'; the path of the corresponding refracted ray

will be along the straight line BI'.

(c) Let J designate the point where the given incident

ray crosses the primary focal plane, and draw the straight

line JG parallel to the z-axis meeting the y-axis in the

point designated by G; then the path of the required

refracted ray will lie along the straight line BI' drawn

through the incidence-point B parallel to the straight line

GF', where F' designates the position of the secondary focal

point.
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(d) Finally, the required refracted ray will be along the

straight line BP drawn parallel to the straight line JC.

85. The Image-Equations in the case of Refraction of

Paraxial Rays at a Spherical Surface.—The rectangular co-

ordinates of the image-point Q' may easily be expressed in

terms of the coordinates of the object-point Q. But the

forms of these expressions will depend partly on the particu-

lar pair of constants (n'/n, r and /, /') which define the sur-

face and partly on the system of axes to which the coordinates

are referred. The axis of the spherical surface will always

represent the axis of abscissae (x-axis), and the ?/-axis will

be at right angles to it; but the origin may be taken at any

place along the x-axis. If the vertex A is taken as the origin

(§ 63), the coordinates of Q, Q' will be (u, y) and (u', y');

that is, u= AM, u' = AM', £/= MQ, 2/'=M'Q'; and since

(§§ 78 and 82)

n'_ n.n' — n y
r_nu'

v! u r ' y n'u
'

we obtain by solving for u' and y';

,_ n'ru ,_ nry

(n''— n) u+nr' (n'-n) u+nr'
In terms of the same coordinates, but with a different

pair of constants, viz., /, /', instead of n f
:n, r, the image-

equations may be put also in other forms, as follows:

It will be recalled that in § 79 the abscissa-formula was

written

:

n'_n . n

u u f
and since (§ 79) n'/n= —f'/f, n and n' may be eliminated

and the image-equations will become:

/+ /'. 1=0
yf
- i J'+u'- /<

tt
-r

tt
,i-i u,

y f+u ff f
,u ,

which are also frequently employed. These formulae may
also be easily derived from the geometrical relations in

Figs. 108 and 109, since we have the proportions:

FM: AM = VA: VW= AF': AM'.
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Instead of a single system of rectangular coordinates, we
may have two systems, one for the object-space and the

other for the image-space. For example, if the focal points

F, F' are selected as the origins of two such systems, and

if the abscissae of the pair of conjugate axial points M, M'
are denoted by x, x', that is, if #= FM, z^F'M', then, since

u =AM =AF+FM = x -/, u' = AM' = AF'+F'M'= x' -/',

the abscissae, u, v! may be eliminated from the equations

above, and the image-equations will be obtained finally in

their simplest forms, as follows:

y * /'"

These relations may be derived directly from the two pairs

of similar triangles FMQ, FAW and F'M'Q', F'AV in

Figs. 108 and 109. The abscissa-relation

x.x'=f.f
is the so-called Newtonian formula (see § 69) . If the x's are

plotted as abscissae and the x"s as ordinates, this equation

will represent a rectangular hyperbola.

86. The^o-called Smith-Helmholtz Formula.—In Fig. Ill

if M'Q'= 2/' represents the image in a spherical refracting

Fig. 111.—Spherical refracting surface: Smith-Helmholtz law.

surface Ay of a small object-line MQ,= y perpendicular to

the axis at M, and if B designates the incidence-point of a
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paraxial ray which crosses the axis before and after refrac-

tion at M and M', respectively, then in the triangle MBM'
sin0:sin0' = BM':BM,

where = ZAMB, 0' = ZAM'B denote the slopes of the

incident ray MB and the corresponding refracted ray BM'.

Since the ray is paraxial, we may put = sin 0, 0' = sin 0'

and also BM =AM = u, BM' = AM' = v! (§ 63) . Hence,

^= -, or u'. 0' = u. 0.
6' u'

But (§ 82)

ri .y' _n.y
m

and, therefore, by multiplying these two equations so as to

eliminate u and uf

, we obtain the important invariant-

relation in the case of refraction of paraxial rays at a

spherical surface, viz.:

ri.y'. 6' = n.y. 0.

This formula states that the function obtained by the con-

tinued product of the three factors n, y, has the same value

after refraction at a spherical surface as it had before re-

fraction. It is a special case of a general law which is found

to apply to a centered system of spherical refracting sur-

faces (§ 118) and which is usually known as Lagrange's law;

but undoubtedly Robert Smith who announced the law for

the case of a system of thin lenses as early as 1738 is entitled

to the credit of it. The importance of the relation was

recognized by Helmholtz(1821-1894), and the form in which

it is written above is due to him. On the whole it seems

proper to adopt the suggestion of P. Culmann and to refer

to this equation as the Smith-Helmholtz formula.
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PROBLEMS

1. If A designates the vertex and C the center of a spher-

ical mirror, and if M, M' designate the points where a

paraxial ray crosses the straight line AC before and after

reflection, respectively, show that

1+1=2
u u r

where r = AC, w= AM, u' = AM'.

2. The radius of a concave mirror is 30 cm. Paraxial rays

proceed from a point 60 cm. in front of it; find where they

are focused after reflection.

Ans. At a point 20 cm. in front of the mirror.

3. The radius of a concave mirror is 60 cm. A luminous

point is placed in front of the mirror at a distance of (a) 120

cm., (b) 60 cm., (c) 30 cm., and (d) 20 cm. Find the position

of the image-point for each of these positions of the object.

Ans. (a) 40 cm. in front of mirror; (b) 60 cm. in front of

mirror; (c) at infinity; and (d) 60 cm. behind mirror.

4. A candle is placed in front of a concave spherical mir-

ror, whose radius is 1 foot, at a distance of 5 inches from

the mirror. Where will the image be formed?

Ans. 30 inches behind the mirror.

5. An object is 24 inches in front of a concave mirror of

radius 1 foot; where will its image be formed? If the object

is displaced through a small distance z, through what dis-

tance will the image move?

Ans. Image is 8 inches in front of mirror; distance through

which image moves will be 2z/(z— 18).

6. An object is placed 1 foot from a concave mirror of

radius 4 feet. If the object is moved 1 inch nearer the mirror,

what will be the corresponding displacement of the image?

Ans. The image moves 3.7 inches nearer the mirror.

7. An object-point is 10 cm. in front of a convex mirror of

radius 60 cm. Find the position of the image-point.

Ans. 7.5 cm. behind the mirror.
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8. Given the positions on the axis of a spherical mirror

of the vertex A, the center C and an object-point M; show-

how to construct the position of the image-point M'. There

are eight possible arrangements of these four points; draw

a diagram for each one of them.

9. If x, x' denote the abscissae, with respect to the focal

point F as origin, of a pair of conjugate points on the axis

of a spherical mirror, show that

x.x'=}\

where / denotes the focal length of the mirror. How are

object and image situated with respect to the focal plane?

10. An object is placed at a distance of 60 cm. in front of

a spherical mirror, and the image is found to be on the same

side of the mirror at a distance of 20 cm. What is the focal

length of the mirror, and is it concave or convex?

Ans. Concave mirror of focal length 15 cm.

11. How far from a concave mirror of focal length 18

inches must an object be placed in order that the image

shall be magnified three times?

Ans. 1 ft. or 2 ft. from the mirror, according as image is

erect or inverted.

12. A candle-flame one inch high is 18 inches in front of

a concave mirror of focal length 15 inches. Find the position

and size of the image.

Ans. The image will be real and inverted, 90 inches from

the mirror, and 5 inches long.

13. A small object is placed at right angles to the axis of

a spherical mirror; show how to construct the image, and

derive the magnification-formula:

y u'

14. A luminous point moves from left to right along a

straight line parallel to the axis of a spherical mirror. Show
by diagrams for both concave and convex mirrors how the

conjugate image-point moves.

15. The center of a spherical mirror is at C, and the
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straight line QQ' joining a pair of conjugate points meets

the mirror in a point U. If P designates the position of a

point which is not on the straight line QQ', and if a straight

line is drawn cutting the straight lines PU, PQ, PC and PQ'

in the points V, R, Z and R', respectively; show that R, R'

are a pair of conjugate points with respect to another spher-

ical mirror whose center is at Z and whose radius is equal to

VZ.

16. Show by geometrical construction that the focal point

of a spherical mirror lies midway between the center and the

vertex.

17. An object is placed 5 inches from a spherical mirror of

focal length 6 inches. Assuming that the object is real,

where will the image be formed, and what will be the mag-

nification? Draw diagrams for both convex and concave

mirrors.

Ans. For concave mirror, image is 30 in. behind the mirror,

magnification =+6; for convex mirror, image is 2T
8
T inches

behind the mirror, magnification =+tV
18. How far from a concave mirror must a real object be

placed in order that the image shall be (a) real and four

times the size of the object, (b) virtual and four times the

size of the object, and (c) real and one-fourth the size of the

object? Draw diagrams showing the construction for each

of these three cases.

Ans. Distance of mirror from the object is equal to (a)

5//4, (b) 3//4, and (c) 5/, where / denotes the focal length.

19. What kind of image is produced in a concave mirror

by a virtual object? Illustrate and explain by means of a

diagram.

Ans. Image is real and erect and smaller than object.

20. Determine the position and magnification of the image

of a virtual object lying midway between the vertex and

focal point of a convex mirror. Draw diagram showing

construction.

Ans. The vertex of the mirror will be midway between the
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axial point of the image and the focal point of the mirror, and

the image will be real and erect and twice as large as object.

21. Show that when an object is placed midway between

the focal point and the vertex of a concave mirror the image

will be virtual and erect and twice as large as the object.

22. An object 3 inches high is placed 10 inches in front of

a convex mirror of 30 inches focal length. Find the position

and size of the image.

Ans. Virtual image 7.5 inches from the mirror and 234

inches high.

23. An object is placed in front of a concave mirror at a

distance of one foot. If the image is real and three times as

large as the object, what is the focal length of the mirror?

Ans. 9 inches.

24. The radius of a concave mirror is 23 cm. An object,

2 cm. high, is placed in front of the mirror at a distance of

one meter. Find the position and size of the image.

Ans. A real image, 0.26 cm. high, 13 cm. from the mirror.

25. Find the position and size of the image of a disk 3

inches in diameter placed at right angles to the axis of a

spherical mirror of radius 6 feet, when the distance from the

object to the mirror is (a) 1 ft., (6) 3 ft., and (c) 9 ft.

Ans. For a concave mirror: (a) Virtual image, 4.5 inches

in diameter, 18 inches from mirror; (6) Image at infinity;

(c) Real inverted image, 1.5 inches in diameter, 4.5 feet from

the mirror.

26. Assuming that the apparent diameter of the sun is

30', calculate the approximate diameter of the sun's image

in a concave mirror of focal length 1 foot.

Ans. A little more than one-tenth of an inch.

27. A gas-flame is 8 ft. from a wall, and it is required to

throw on the wall a real image of the flame which shall be mag-
nified three times. Determine the position and focal length

of a concave mirror which would give the required image.

Ans. The mirror must have a focal length of 3 ft. and must

be placed at a distance of 4 ft. from the object.
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28. It is desired to throw on a wall an image of an object

magnified 12 times, the distance of the object from, the

wall being 11 feet. Find the focal length of a concave

mirror which will do this, and state where it must be

placed.

Ans. The focal length of the mirror must be f| ft., and

it must be placed 1 ft. from the object.

29. Assuming that the eye is placed on the axis of a spher-

ical mirror, and that the rays are paraxial, explain how the

field of view is determined. Draw accurate diagrams for

concave and convex mirrors.

30. A man holds, halfway between his eye and a convex

mirror 3 feet from his eye, two fine parallel wires, so that

they are seen directly and also by reflection in the mirror.

Show that if the apparent distance between the wires as

seen directly is 5 times that as seen by reflection, the radius

of the mirror is 3 feet.

31. A scale etched on a thin sheet of transparent glass is

placed between the eye of an observer and a convex mirror

of focal length one foot. When the distance between the

eye and the scale is three feet, one of the scale divisions

appears to cover three divisions of the image in the mirror.

Find the position of the mirror.

Ans. The mirror is one foot from the scale.

32. A scale etched on a thin sheet of transparent glass is

interposed between the eye of an observer and a convex

mirror of focal length /. When the distance of the scale from

the eye is b feet, one division of the scale appears to cover

m divisions of its image in the mirror. If now the scale is

displaced through a distance c in the direction of the axis

of the mirror, it is found that one division of the scale ap-

pears to cover k divisions in the mirror. Find an expression

for / in terms of m, k, b and c.

Ans.

(k—m) (b—c) be
f= {b{k-m)-(k-l)c\ {6(fc-m)-(fc+l)c
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33. A concave and a convex mirror, each of radius 20 cm.,

are placed opposite to each other and 40 cm. apart on the

same axis. An object 3 cm. high is placed midway between

them. Find the position and size of the image formed by

reflection, first, at the convex, and then at the concave mirror.

Draw accurate diagram, and trace the path of a ray from

a point in the object to the corresponding point in the image.

Ans. The image is 12i
8
r cm. from the concave mirror,

real and inverted, and i\ cm. high.

34. Same problem as No. 33, except that in this case the

image is formed by rays which have been reflected first from

the concave mirror and then from the convex mirror.

Ans. The image is 6f cm. behind the convex mirror,

virtual and inverted, and 1 cm. high.

35. Two concave mirrors, of focal lengths 20 and 40 cm.,

are turned towards each other, the distance between their

vertices being one meter. An object 1 cm. high is placed

between the mirrors at a distance of 10 cm. from the mirror

whose focal length is 20 cm. Find the position and size of

the image produced by rays which are reflected first from

the nearer mirror and then from the farther mirror.

Ans. A real inverted image, 1 cm. long, at a distance of

60 cm. from the mirror that is farther from the object.

36. The distance between the vertices Ai and A2 of two

spherical mirrors which face each other is denoted by d,

that is, <2 =A2Ai. The focal points of the mirrors are at Fi

and F2 , and the focal lengths are /i = FiAi and /2 = F2A2 .

An object is placed between the mirrors at a distance u\

from Ai. Rays proceeding from the object are reflected,

first, from the mirror Ai and then from the mirror A2 ; show

that the distance of the final image from the mirror A 2 is

</i.m~(/i+m) Ah .

and that the magnification is

fi.f*

(/i+«o (/2+d)-/i.«r
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37. If the rays fall first on the mirror A2 and then on Ai,

these letters having exactly the same meanings as in No. 36,

then the distance of the image from mirror Ai will be

fi\(f2+d) (ttrH)+/2rfl

B

(/i 7d)/2+(t*i+d) Ui-h-dY
and the magnification will be

Uh
(A-d) f2+(ui+d) Ui~h-d)

m

38. If the mirror A x in Nos. 36 and 37 is a plane mirror,

show that when the light is reflected froni the plane mirror

first the distance of the image from the curved mirror is

(ui—d)f2

and that the magnification is

h+d—ui

fr\-d-ui
and that when the light is reflected from the curved mirror

first, the distance of the image from the plane mirror is

ih+d) (U!+d)+f2d

\
h+ui+d

and that the magnification is

h
f2+Ui+d

'

If both the mirrors are plane, the magnification will be

unity, and the image after two reflections, first at Ai and

then at A2 , will be formed at a distance of (u\—d) from

A2 ; whereas if the light falls first on mirror A2 , the distance

of the image from the other mirror will be (uy\-2d).

39. If M, M' are a pair of conjugate points on the axis

of a spherical refracting surface which divides two media

of indices n and n f

, show that

(CAMM')=-,
n

where A and C designate the vertex and the center of the

spherical surface.

40. Show how to construct the position of the point M'
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conjugate to a given point M on the axis of a spherical re-

fracting surface; and draw diagrams for all the possible ar-

rangements of the four points A, C, M, M'. Prove the con-

struction, and derive the formula n'/u' = n/u-\-(n'—ri)/r,

where n, n' denote the indices of refraction, and w=AM,
u' = AM',r= AC.

41. Show how the formula in No. 40 includes as special

cases the case of refraction of paraxial rays at a plane sur-

face and the case of reflection at a spherical mirror.

42. From the formula in No. 40 derive expressions for

the focal lengths /, /' of a spherical refracting surface, and

show that

f+f+r= 0, ra./'+rc'./=0.

43. Does the construction found in No. 40 apply to the

case of a spherical mirror? Explain with diagrams.

44. Apply the construction employed in No. 40 to de-

termine the positions of the focal points F, F' of a spherical

refracting surface, and show that

FA= CF', F'A= CF, F'A: FA= -»': n.

45. Where are the focal points of a plane refracting sur-

face? Explain clearly.

46. Explain how the results of No. 44 are applicable to

a spherical mirror.

47. Air and glass are separated by a spherical refracting

surface of radius 7'= AC. Find the positions of the focal

points F, F' for the cases when the refraction is from air to

glass and from glass to air and when the surface is convex

and concave; illustrating your answers by four accurately

drawn diagrams. (Take indices of refraction of air and

glass equal to 1 and 1.5, respectively.)

48. From the figures used in No. 44 for constructing the

positions of the focal points F, F', derive the formulae for

the focal lengths which were obtained in No. 42.

49. Light falling on a concave surface separating water

(n=1.33) from glass (n' = 1.55) is convergent towards a

point 10 cm. beyond the vertex. The radius of the surface
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is 20 cm. Find the point where the refracted rays cross the

axis.

Ans. 13.19 cm. beyond the vertex of the sphere in the

glass medium.

50. Light is refracted from air to glass (n
r

: n = 3: 2) at a

spherical surface. If the vertex of the bundle of incident

rays is in the glass and 20 cm. from the vertex of the re-

fracting surface, and if the refracted rays are converged to

a point in the glass and 5 cm. from the vertex, determine

the form and size of the surface.

Ans. Convex surface of radius 2 cm.

51. A small air-bubble in a glass sphere, 4 inches in di-

ameter, viewed so that the speck and the center of the sphere

are in line with the eye, appears to be one inch from the

point of the surface nearest the eye. What is its actual dis-

tance, assuming that the index of refraction of glass is 1.5?

Ans. 1.2 inches.

52. The radius of a concave refracting surface is 20 cm.

A virtual image of a real object is formed at a distance of

40 cm. from the vertex, and the distance from the object

to the image is 60 cm. The first medium is air (n = 1). Find

the index of refraction of the second medium.

Ans. n' = 1.6.

53. Light diverging from a point M in air is converged

by a spherical refracting surface to a point M' in glass of

index 1.5. The distance MM' =18 cm., and the point M
is twice as far from the surface as the point M'. Find the

radius of the surface. Ans. 1.5 cm.

54. Find the positions of the focal points F, F' of a con-

cave spherical refracting surface separating air from a me-

dium of index 1.6, having found that the image of a luminous

point 30 cm. in front of the surface is midway between the

luminous point and the surface.

Ans. AF =+ 13.63 cm.; AF'= -21.81 cm.

55. A convergent bundle of rays is incident on a spherical

refracting surface of radius 10 cm. The relative index of
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refraction from the first medium to the second medium is

equal to 2 (n
r

: n = 2:l). If the incident rays- cross the axis

at M and the refracted rays at M', and if M'M = +60 cm.,

determine the positions of the points M, M'.

Ans. If the surface is convex, AM = +77.72 cm., AM'
=+ 17.72 cm. If the surface is concave, then either AM =
+30 cm., AM' = —30 cm. or AM = +20 cm., AM' = -40 cm.

56. A beam of parallel rays passing through water (n=
1.3) is refracted at a concave surface into glass (n'= 1.5).

If the radius of the surface is 20 cm., where will the light be

focused? Ans. Virtual focus, 150 cm. from the surface.

57. A small air-bubble is imbedded in a glass sphere at

a distance of 5.98 cm. from the nearest point of the surface.

What will be the apparent depth of the bubble, viewed from

this side of the sphere, if the radius of the sphere is 7.03 cm.,

and the index of refraction from air to glass is 1.42?

Ans. 5.63 cm.

58. Assuming that the cornea of the eye is a spherical

refracting surface of radius 8 mm. separating the outside air

from the aqueous humor (of index f), find the distance

of the pupil of the eye from the vertex of the cornea, if its

apparent distance is found to be 3.04 mm. Also, if the ap-

parent diameter of the pupil is 4.5 mm., what is its real

diameter? Ans. 3.6 mm.; 4 mm.
59. Construct the image M'Q' of a small object MQ per-

pendicular at M to the axis of a spherical refracting surface,

and derive the magnification-formula in terms of the dis-

tances of M and M' from the vertex of the surface. Draw
two diagrams, one for convex, and one for concave surface.

60. Derive the image-equations of a spherical refracting

surface referred to the focal points as origins.

61. Derive the image equations of a spherical refracting

surface in the forms

f/u+f'/u'+ 1 = 0, y'/y =f/(f+u) = (f'+u')/f.

62. Show that there are two positions on the axis of a

spherical refracting surface where image and object coincide.
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63. Locate the two pairs of conjugate planes of a spheri-

cal refracting surface for which image and object have the

same size.

64. A real object, 1 cm. high, is placed 12 cm. from a con-

vex spherical refracting surface, of radius 30 cm., which

separates air (n = l) from glass (n'= 1.5). Find the position

and size of the image.

Ans. Image is virtual and erect, 1.25 cm. high, 22.5 cm.

from vertex.

65. In the preceding example, suppose that the object

is a virtual object at the same distance from the spherical

refracting surface. Find the position and size of the image

in this case.

Ans. Image is real and erect, I cm. high, and 15 cm.

from vertex.

66. Solve Nos. 64 and 65 for the case when the surface

is concave; and draw diagrams showing construction of the

image in all four cases.

67. Solve No. 64 on the supposition that the first medium
is glass and the second medium air.

Ans. Image will be virtual and erect, if cm. high, and

f? cm. from vertex.

68. (a) The human eye from which the crystalline lens

has been removed (so-called "aphakic eye") may be re-

garded as consisting of a single spherical refracting surface,

namely, the anterior surface of the cornea. If the radius

of this surface is taken as 8 mm., and if the index of refrac-

tion of the eye-medium (both the aqueous and vitreous

humors) is put equal to |, what will be the focal lengths

of the aphakic eye? (b) Assuming that the length of the

eye-ball of an aphakic eye is 22 mm., where will an object

have to be placed to be imaged distinctly on the retina at

the back of the eye?

Ans. (a)/=+24mm.,/'=-32mm.; (b) ^ = +52.8 mm.,
which means that the object must be virtual and lie behind

the eye.
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69. Listing's " reduced eye" is composed of -a single

convex spherical refracting surface of radius 5.2 mm. sep-

arating air (n = l) from the vitreous humor (n' = 1.332).

Calculate the focal lengths.

Ans. /=+ 15.68 mm., /'= -20.90 mm.
70. In Donder's "reduced eye" the focal lengths are

assumed to be +15 and —20 mm. Calculate the radius of

the equivalent spherical refracting surface and the index of

refraction of the vitreous humor for these values of the focal

lengths. Ans. r = +5mm.; n' = i.

71. The angular distance of a star from the axis of a

spherical refracting surface which separates air (n = l) from

glass (n' = 1.5) is 10°. The surface is convex and of radius

10 cm. Find the position of the star's image.

Ans. A real image will be formed in the secondary focal

plane about 3.5 cm. from the axis.

72. What is the size of the image on the retina of List-

ing's " reduced eye" (No. 69) if the apparent size of the

distant object is 5°? Ans. 1.36 mm.
73. A hemispherical lens, the curved surface of which has

a radius of 3 inches, is made of glass of index 1.5. Show
that rays of light proceeding from a point on its axis 4 inches

in front of its plane surface will emerge parallel to the axis.

74. A paraxial ray parallel to the axis of a solid refracting

sphere of index n' is refracted into the sphere at first towards

a point X on the axis, and after the second refraction crosses

the axis at a point F'. If the first and last media are the

same and of index n, show that the point F' lies midway be-

tween the second vertex of the sphere and the point X.

75. A small object of height y is placed at the center of

a spherical refracting surface in a plane at right angles to

the axis. Determine the position and size of the image.

Show how the Smith-Helmholtz formula (§ 86) is appli-

cable to a part of this problem.

Ans. Image is in same plane as object, erect, and of size

y' = n.y/n'.
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76. A plane object is placed parallel to a plane refracting

surface. Show that its image formed by paraxial rays is

erect and of same size as object. Is the Smith-Helmholtz
formula (§ 86) applicable to a plane refracting surface? Is

it applicable to a spherical mirror? Explain clearly.

77. In a convex spherical refracting surface of radius

0.75, which separates air (n = l) from water (n' = -|), the

image is real, inverted and one-third the size of the object.

Find the positions of object and image. If a ray pro-

ceeding from the axial point of the object is inclined to the

axis at an angle of 3°, what will be the slope of the correspond-

ing refracted ray?

Ans. Object is in air and image is in water, their distances

from the surface being 9 and 4, respectively; slope of re-

fracted ray is —4.5°.

78. In a spherical refracting surface

a=6+<p, a'=d'+<p,

where a, a/ denote the angles of incidence and refraction,

6, 6' denote the inclinations of the ray to the axis before

and after refraction, and <p denotes the so-called central

angle (ZBCA). For a paraxial ray the law of refraction

may be written

n'.a' = n.a.

From these formulae deduce the abscissa-relation in the form

n' _n
,
n'— n

u f u r

79. The curved surface of a glass hemisphere is silvered.

Rays coming from a luminous point at a distance u from

the plane surface are refracted into the glass, reflected from

the concave spherical surface, and refracted at the plane

surface back into the air. If r denotes the radius of the

spherical surface and n the index of refraction of the glass,

show that

u u r
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where v! denotes the distance of the image from the plane

surface.

80. A plane object of height one inch is placed at right

angles to the axis of a spherical mirror. The slope of the re-

flected ray corresponding to an incident paraxial ray which

emanates from the axial point of the object at a slope of +5°

is +10°. Is the image erect or inverted, and what is its size?

Ans. Inverted image, one-half inch high.



CHAPTER VII

REFRACTION OF PARAXIAL RAYS THROUGH AN INFINITELY

THIN LENS

87. Forms of Lenses.—In optics the word lens is used

to denote a portion of a transparent substance, usually

isotropic, comprised between two smooth polished surfaces,

one of which may be plane. These surfaces are called the

faces of the lens. The curved faces are generally spherical,

and this may always be considered as implied unless the

contrary is expressly stated. Lenses with spherical faces

are sometimes called " spherical lenses" to distinguish them

from cylindrical, sphero-cylindrical and other forms of

lenses which are also quite common, especially in modern

spectacle glasses. A plane face may be regarded as a spher-

ical or cylindrical surface of infinite radius.

The axis of a lens is the straight line which is normal to

both faces, and, consequently, a ray whose path lies along

the axis (the so-called axial ray) will pass through the lens

without being deflected from this line. The axis of a spher-

ical lens is the straight line joining the centers d, C 2 of

the two spherical faces, and since a lens of this kind is sym-

metric around the axis, it may be represented in a plane

figure by a meridian section showing the arcs of the two

great circles in which this plane intersects the spherical

faces. Depending on the lengths of the radii in comparison

with the length of the line-segment CiC2 , these arcs inter-

sect in two points equidistant from the axis or else they do

not intersect each other at all.

(a) If they intersect, then CiC2 is less than the arith-

metical sum but greater than the arithmetical difference

of the radii, and the lens may be a double convex lens

217
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Fig. 112, a.—Double convex lens.
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Fig. 112, &.—Plano-convex lens.
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Fig. 112, c.—Convex meniscus.

(Fig. 112, a) or a convex meniscus (Fig. 112, c). A particular

case of a double convex lens is a plano-convex lens (Fig. 112, b).

(b) If they do not intersect, then either one circle lies

wholly outside the other, the distance between the centers

being, therefore, greater than the arithmetical sum of the

radii, so that the lens is a double concave lens (Fig. 113, a),

or, in case one of the surfaces is plane, a plano-concave lens

(Fig. 113, b); or else one circle lies wholly inside the other,

so that the distance between the centers is less than the

arithmetical difference of the radii, and then the lens has

the form of a concave meniscus (Fig. 113, c).

The first face of a lens is the side turned towards the in-

cident light. The points where the axis meets the two faces

are called the vertices, and the distance from the vertex Ai of

the first face to the vertex A2 of the second face, which is

denoted by d, is called the thickness of the lens; thus, d —

AiA 2 . Since the direction which the light takes in going

across the lens from Ai to A2 is the positive direction along

the axis (see § 63), the thickness d is essentially a positive

magnitude.
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Fig. 113, a.—Double concave lens.
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Fig. 113, c.—Concave meniscus.
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The radii of the surfaces, denoted by rh r2 , are the ab-

scissa? of the centers Ci, C2 with respect to the vertices

Ai, A 2 , respectively; thus, ri = AiCi, r2 = A 2C2 .

Certain special forms of spherical lenses may be mentioned

here, viz.

:

(a) Symmetric Lenses, which are double convex or double

concave lenses whose surfaces have equal but opposite

curvatures (ri-f-r2 = 0). A particular case of double convex

symmetric lens is one whose two faces are portions of the

same spherical surface; a lens of this kind being sometimes

called a solid sphere (d = ri— r2 = 2r 1)

.

(b) Concentric Lenses, whose two faces have the same

center of curvature (CiC2 = 0). A concentric lens may be

Fig. 114.—Concentric concave meniscus.

a double convex lens characterized by the relation d = r\—r2 ,

of which a "solid sphere" is a special case; or it may have

the form of a concave meniscus for which either ri>r2>0
and d = ri— r2 (Fig. 114) or ri<r2 <0 and d = r2 - r\.

(c) Lenses of Zero Curvature, in which the axial thickness
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Fig. 115.—Lens of zero curvature (ri= r2).

of the lens is equal to the distance between the centers (d=

AiA2 = CiC2). This lens is a convex meniscus characterized

by the condition that r\— r2 = (Fig. 115).

Lenses may also be conveniently classified in two main

groups, viz., convex lenses and concave lenses, depending on

the relative thickness of the lens along the axis as compared

with its thickness at the edges. The thickness of a convex

lens is greater along the axis than it is out towards the edge,

whereas a concave lens is thinnest in the middle. Each of

these two main divisions includes three special forms which

have already been mentioned. Thus, the three types of con-

vex lenses are the double convex, the plano-convex and the

convex or " crescent-shaped " meniscus, as shown in Fig. 112;

and, similarly, the types of concave lenses are the double

concave, plano-concave and the concave or " canoe-shaped"

meniscus (Fig. 113).

A convex glass lens of moderate thickness held in air with

its axis towards the sun has the property of a burning glass

and converges the rays to a real focus on the other side of
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the lens. A convex lens is called therefore also a convergent

lens or a positive lens. On the other hand, under the same

circumstances, a concave lens will render a beam of sun-

light divergent, and, accordingly, a concave lens is called

also a divergent lens or a negative lens. The explanation of

the terms " positive" and " negative" as applied to lenses

will be apparent when we come to speak of the positions of

the focal points of a lens (§ 90).

Finally, if the curvatures of the two faces of the lens are

opposite in sign, the lens is double convex or double con-

cave; if the curvatures have the same sign, the lens is a

meniscus; and if the curvature of one face is zero, the lens

is plano-convex or plano-concave.

88. The Optical Center of a Lens surrounded by the

same medium on both sides.—When a ray of light emerges

at the second face of a lens into the surrounding medium
in the same direction as it had when it met the first face,

the path of the ray inside the lens lies along a straight line

which crosses the axis at a remarkable point O called the

optical center of the lens, which is indeed the (internal or

external) " center of similitude" of the two circles whose

arcs are the traces of the spherical faces of the lens in the

meridian plane which contains the ray.

In order to prove this, draw a pair of parallel radii CiBi and

C2B 2 (Fig. 116), and suppose that a ray enters the- lens at

Bi and leaves it at B 2 , so that the straight line BiB 2 repre-

sents the path of the ray through the lens. If the straight

line RBi represents the path of the incident ray, a straight

line B 2S drawn through B 2 parallel to RBi will represent

the path of the emergent ray; because, since the tangents

to the circular arcs at Bi, B 2 are parallel to each other, the

lens behaves towards this ray which enters it at Bi exactly

like a slab of the same material with plane parallel sides

(§44). Consequently, the position of the point O where

the straight line BiB 2 ,
produced if necessary, crosses the

axis of the lens is seen to be entirely dependent on the
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Fig. 116.—Optical center of lens.

geometrical form of the lens. In particular, the position

of this point will not depend on the direction of the inci-

dent ray, as will be shown by the following investigation.

From the similar triangles OCiB! and OC2B2 , we derive

the proportion

:

OCi: OC2 = BiCi: B2C2 =AiCi: A2C2 .

Accordingly, we may write:

OAi+AiC 1= AiCi

OA 2+A 2C 2 A2CV
and, consequently:

AiO_n
A2 r2

'

Now A2 =A2Ai+AiO =AiO—d; so that we obtain finally:

AiO d.
ri-r 2

The function on the right-hand side of this equation depends

only on the form of the lens, so that the position of the
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point with respect to the vertex of the first face of the

lens may be found immediately as soon as we know the

magnitudes denoted by rh r2 and d.

TO C
A
AT oo *

Fig. 117.—Optical center of lens with one plane face is at the vertex

of curved face.

If the lens is double convex or double concave, the optical

center O will lie inside the lens between the vertices Ai and

Fig. 118.—Optical center of meniscus lies outside lens.

A2 ; if one face of the lens is plane (Fig. 117), the optical

center will coincide with the vertex. of the curved face; and,
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finally, if the lens is a meniscus (Fig. 118), the optical center

will lie outside the lens entirely.

In general, the positions of the points designated in the

diagrams by the letters N, N' will vary for different ray-

paths Bi B2 within the lens; but if the rays are paraxial,

the positions of N, N' are fixed. In fact, if the ray RBi B2 S

is a paraxial ray, the points N, N' are the so-called nodal

points of the lens (see § 119).

89. The Abscissa-Formula of a Thin Lens, referred to

the axial point of the lens as origin.—Ordinarily, the axial

thickness of a lens is much smaller than either of the radii

of curvature, so that in many lens-problems this dimension

is negligible in comparison with the other linear dimensions

that are involved. Moreover, the lens-formulae are greatly

simplified by ignoring the thickness of the lens. However,

in using these formulae one must be duly cautious about

taking too literally results that are strictly applicable only

to an infinitely thin lens, whose vertices are regarded as

coincident, that is, Ai A2 = d= 0. The approximate formulae

that are obtained for lenses of zero-thickness are often of

very great practical utility, especially in the preliminary

design of an optical instrument composed, it may be, of

several lenses whose thicknesses are by no means negligible.

The optical center O of an infinitely thin lens coincides

with the two vertices Ai, A2 , and hereafter these three co-

incident points in which the axis meets an infinitely thin lens

will be designated by the simple letter A. An infinitely thin

lens is represented in a diagram by the segment of a straight

fine which is bisected at right angles by the axis of the lens;

the actual form of the lens being indicated by assigning the

positions of the centers Ci, C2 of the two faces. In order to

tell at a glance the character of a lens, the form of it at the

edges may be indicated, as shown in Fig. 119. Fig. 119,a

is a conventional representation of an infinitely thin con-

vex lens, and Fig. 119, b is a similar diagram for an infinitely

thin concave lens.
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Let us assume that the lens is surrounded by the same

medium on both sides; and let n denote the index of refrac-

Fig. 119, a.—Infinitely thin convex lens; M, M' conjugate points on axis.

tion of this medium, while n' denotes the index of refraction

of the lens-substance itself.

The broken line RBS (Fig. 119) represents the path of

a paraxial ray which enters and leaves the infinitely thin

Fig. 119, fr.—Infinitely thin concave lens; M, M' conjugate points

on axis.

lens at the point marked B. The points where the ray

crosses the axis before and after passing through the lens

will be designated by M, M', respectively. The straight
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line BM/ which intersects the axis at the point marked Mi'
shows the path the ray takes after being refracted at the first

face of the lens. Obviously, the points M, M/ are a pair of

conjugate axial points with respect to the first surface of the

lens, and, similarly, the points MY, M' are a pair of con-

jugate axial points with respect to the second surface of

the lens, and, therefore, M, M' are a pair of conjugate axial

points with respect to the lens as a whole, so that M' will

be the image in the lens of an axial object-point M. The
abscissae of these points with respect to the axial point A
as origin will be denoted by u, u'; thus, w=AM, w'= AM'.
Also, put wi

/ = AMi /

. The radii of curvature of the two

faces are ri = ACi, r2 = AC2-

Accordingly, in order to obtain the formulae connecting

u and u', we have merely to apply the fundamental equa-

tion (§ 78) for the refraction of paraxial rays at a spherical

surface to each face of the lens in succession, bearing in

mind that the first refraction is from medium n to medium
n', while the second refraction is from medium n' to me-

dium n. Thus, we obtain

:

n' n n'—n n n' n'—n
U\ u ri u' U\ r<t

Eliminating U\ by adding these equations, and dividing

through by n, we derive the abscissa-formula for the refrac-

tion of paraxial rays through an infinitely thin lens, in the

following form

:

1 l n'-n /l 1\

u' u n \ri rj'

The expression on the right-hand side of this equation, in-

volving only the lens-constants r±
f

r2 and n'/n, has for a

given lens a perfectly definite value, which may be com-

puted once for all. And so if we put

l_n'^n /l 1\

f n \ri r2
/'

where the magnitude denoted by / is a constant of the lens
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(which we shall afterwards see is the focal length of the

lens), the formula above may be written:

1 _1 = 1

u' u /'

which is the form of the lens-formula that is perhaps most
common. For a given value of u we find u' =f.u/(f-\-u).

Incidentally, it may be observed that the equation above

is symmetrical with respect to u and -vl; that is, the equa-

tion will remain unaltered if —it is written in place of u' and
— u' in place of u. Accordingly, if the positions of a pair of

conjugate points on the axis are designated by M, M'

Fig. 120.—Infinitely thin lens: AP= M'A= BM, AP'= MA.

(Fig. 120), the pair of axial points designated by P, P' will

likewise be conjugate, provided AP = M'A and AP' =MA; so

that the thin lens at A bisects the two segments PM' and

P'M. Another and more striking way of exhibiting this

characteristic property of an infinitely thin lens consists

in saying, that if M' is the image of an axial object-point

at M, and if then the lens is shifted from its first position

at A to a point B such that MB = AM', the object-point M
will again be imaged at M'.

90. The Focal Points of an Infinitely Thin Lens.—If

the object-point M is at the infinitely distant point on the

axis of the lens, its image will be formed at a point F' whose

position on the axis may be found by putting u= oo ,u' = AF'
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in the formula l/u'—l/u=lff; thus, we find AF'=/. Sim-

ilarly, the object-point F conjugate to the infinitely dis-

tant point of the axis is found by substituting in the same

equation the pair of values u= AF, ur— oo
J
whence we ob-

tain AF = —/. These points F, F' are the primary and sec-

ondary focal points, respectively, and, accordingly, it is

evident that the focal points of an infinitely thin lens are equi-

distant from the lens and on opposite sides of it.

The character of the imagery in the case of an infinitely

thin lens is completely determined as soon as we know the

positions of the two focal points F, F'; and since the point A
where the axis meets the lens lies midway between F and

F', it is obvious that the natural division of lenses is into

two classes depending on the order in which the three points

above mentioned are ranged along the axis.

(1) 7/ the primary focal point is in front of the lens (Fig.

121, a), that is, if the order of the points named in the se-

Fig. 121, a.—Focal points (F, F'),of infinitely thin lens

(FA = AF'=/). In a positive (or convex or conver-

gent) lens the first focal point (F) lies on same side

of lens as incident light (real focus)

.

quence in which they are reached by light traversing the

axis of the lens is F, A, F', then incident rays parallel to
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the axis will be converged to a real focus at F' on the other

side of the lens, and the lens is a convergent lens (§ 87). It

is also called a positive lens, because the lens-constant (or

primary focal length) /=FA = AF' is measured along the

axis in the positive sense. If it is assumed that n'>n (as,

for example, in the case of a glass lens in air), the sign of

this constant /, according to the formula above which de-

fines 1//, will be the same as that of the term (l/ri— l/r2),

which is the algebraic expression of the difference of curva-

tures (§ 99) between the two faces of the lens. If the lens

is double convex, plano-convex or a crescent-shaped me-

niscus—that is, in all forms of lenses that are thicker in

the middle than out towards the edges—the difference of

curvatures (l/ri—l/r2 ) will be found to be positive. And
hence, as already stated (§ 87), thin lenses of this descrip-

tion are convergent if n'>n.

(2) // the secondary focal point is in front of the lens (Fig.

121, b), that is, if the points F', A, F are ranged along the

W

F'

Fig. 121, b—Focal points (F,F') of infinitely thin

lens (FA = AF'=/). In a negative (or concave or

divergent) lens the first focal point (F) lies on
the other side of the lens from the incident light

(virtual focus)

.
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axis in the order named, incident parallel rays will be made
to diverge from a virtual focus at F', and in this case the

lens is said to be a divergent or negative lens, since now the

lens-constant /=FA=AF' is measured along the axis in

the negative sense. For lenses which are thinner in the

middle than at the edges, that is, for double concave, plano-

concave and canoe-shaped meniscus lenses the difference of

curvatures (1/ri— l/r2) will be found to be negative; and

hence for such lenses the constant / will be negative if n r>n.

A case of rather more theoretical than practical interest is

afforded by an infinitely thin concentric lens (§ 87) for which

r2 = rh and which is therefore uniformly thick in a direc-

tion parallel to the axis, so that according to the above

classification it should be neither convergent nor divergent.

In fact, the value of the lens-constant / for this lens is in-

finity, and hence u\=u, so that object-point M and image-

point M' are coincident always. A bundle of parallel rays

traversing an infinitely thin concentric lens will emerge

from the lens just as though the lens had not been inter-

posed in the path of the rays.

91. Construction of the Point M' Conjugate to the Axial

Point M with respect to an Infinitely Thin Lens.—The
planes which are perpendicular to the axis of the lens at the

focal points F, F' are called the primary and secondary focal

planes, respectively.

The point M' conjugate to a point M on the axis of an

infinitely thin lens surrounded by the same medium on both

sides may be constructed as follows

:

Through the given point M (Fig. 122, a and b) draw a

straight line MB meeting the lens at B, and through the

axial point (A) of the lens draw a straight line AI' parallel

to MB and meeting the secondary focal plane in the point

V; then the point where the straight line BF, produced if

necessary, crosses the axis will be the required point M'
conjugate to M.
The point M' may also be constructed in another way,
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as follows: Let J designate the point where the straight

line MB crosses the primary focal plane, and through B
draw a straight line parallel to the straight line JA, which

Fig. 122, a and 6.—Infinitely thin lens: Construction of point

M' conjugate to axial object-point M. (a) Convex,

(6) Concave lens.

will intersect the axis of the lens in the required point M'.

Fig. 122, a shows the construction in the case of a convex

lens and Fig. 122, b shows it for a concave lens.

The proof is obvious. From the two pairs of similar

triangles MAB, AFT and MM'B, AMT, we obtain the

proportions:

MA =MB=MM'.
AF' AI' AM' '
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and if we introduce the symbols w=AM, w' = AM', /=AF',
we get:

— u _u'—

u

which is the same as the abscissa-relation found in § 89.

92. Extra-Axial Conjugate Points Q, Q'; Conjugate

Planes.—Since the axial point A of an infinitely thin lens

is also the optical center of the lens (§ 89), a straight line

drawn through A will represent the path of a ray both be-

fore and after passing through the lens at this point. If

the axis of the lens is rotated in a meridian plane through

Fig. 123.—Infinitely thin lens: Image-point Q' conjugate to extra-axial

object-point Q.

a very small angle FAJ (Fig. 123) around the point A as

vertex, the focal points F, F' will describe the small arcs

FJ, FT and the straight line JI' will represent the path of

a paraxial ray traversing the lens at A. The points Q, Q'

at the ends of the arcs MQ, M'Q' traced out in this angular

movement of the axis by a pair of conjugate axial points

M, M' will evidently occupy the same relation to each

other on the straight line JI' as M, M' have to each other
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on the straight line FF', and therefore Q, Q' are a pair of

extra-axial conjugate points.

Accordingly, if the points of an object lie in the vicinity

of the axis on an element of a spherical surface described

Fig. 124, a and b.—Infinitely thin lens: Lateral magnification

and construction of image M'Q' conjugate to short object-

line MQ perpendicular to axis, (a) Convex, (6) Concave lens.

around the vertex A of the infinitely thin lens as center,

the corresponding points of the image will be assembled

on a concentric spherical surface; and since, within the

region of paraxial rays, these spherical elements may be

regarded as plane, it follows that a small plane object at
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right angles to the axis will be reproduced by a similar

plane image also at right angles to the axis.

Conjugate planes are pairs of parallel planes perpendicular

to the axis of the lens; and any straight line drawn through

the center of an infinitely thin lens will pierce a pair of conju-

gate planes in a pair of conjugate points.

In particular, the planes conjugate to the focal planes

are the infinitely distant planes of the image-space and

object-space, according as the infinitely distant plane is

regarded as belonging to one or the other of these

regions.

The construction of the point Q' conjugate to an extra-

axial object-point Q (Fig. 124, a and b), with respect to

an infinitely thin lens, is made by a method precisely sim-

ilar to that employed in the corresponding problem in the

cases both of a spherical mirror (§71) and of a spherical

refracting surface (§ 81) ; the only difference in this case

being that the center of the lens takes the place of the center

of the spherical surface and that the focal points of the

lens are at equal distances on opposite sides of it.

93. Lateral Magnification in case of Infinitely Thin Lens.

—The lateral magnification in the case of an infinitely thin

lens, defined, as in §§ 72 and 82, as the ratio of the height

of the image (y' = M'Q') to the height of the object (y = MQ),
may be obtained from the diagram (Fig. 124) and is evi-

dently given by the following formula:

y' Wy=-=-;
y u

so that the linear dimensions of object and image are in the

same ratio as their distances from the thin lens. Moreover,

it appears that the image is erect or inverted according as

object and image lie on the same side or on opposite sides of

the lens.

Another expression for the lateral magnification may
be derived by considering the two pairs of similar right
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triangles FMQ, FAW and F'M'Q', F'AV, from which we
obtain the proportions:

AW_ FA M'Q'_ F'M'
.

MQ FM' AV F'A ;

and since

AW = M'Q' = ?/, AV=MQ = y, FA = AF'=/,
we find:

y' f x'

y * f
where z = FM, x' = F'M' denote the abscissae of M, M'
with respect to the focal points F, F', respectively, as ori-

gins. Accordingly, the lateral magnification varies inversely

as the distance of the object from the primary focal plane, and

directly as the distance of the image from the secondary focal

plane.

94. Character of the Imagery in a Thin Lens.—The
Newtonian form of the abscissa-relation (c/. § 85) for an

infinitely thin lens surrounded by air is

:

x.x'=~f,
which shows that object and image lie on opposite sides of

the focal planes; so that if M is a point on the axis to the

right of the primary focal point F, the conjugate point M'
will be found on the axis at the left of the secondary focal

point F', and vice versa.

The character of the imagery produced by the refraction

of paraxial rays through an infinitely thin lens is exhibited

in the diagrams Fig. 125, a and b. The numerals 1, 2, 3,

etc., mark the successive positions of an object-point which

is supposed to traverse a straight line parallel to the axis

(so-called " object-ray") from an infinite distance in front

of the lens to an infinite distance on the other side of it.

Until it reaches the lens at the point marked V the object

is real, thereafter it is virtual. The corresponding numerals

with primes, viz., 1', 2', 3', etc., ranged along the straight

line VF' (called the " image-ray") mark the successive

positions of the image-point, which, starting, from the
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secondary focal point F', moves along this line always in

the same direction out to infinity and back again to its

starting point. The straight lines 11', 22', 33', etc., con-

T0 5ATW N«'

1
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object-space and image-space. At the point V object and

image coincide with each other in the lens itself, and here

object and image are congruent. The so-called principal

planes (§ 119) of an infinitely thin lens coincide with each

other in the plane perpendicular to the axis of the lens at Us

optical center A. The fact that object-point and image-

point coincide with each other at V is expressed geometri-

cally by saying the y-axis is the base of a range of self conju-

gate points.

In a convex lens (Fig. 125, a) the image of a real object

is seen to be real and inverted as long as the object lies in

front of the lens beyond the primary focal plane; whereas

the image is virtual and erect if the object is placed between

the primary focal plane and the lens. The image of a vir-

tual object in a convex lens is formed between the lens and

the secondary focal plane and is real and erect.

In a concave lens (Fig. 125, b) the image of a real object

lies between the lens and the secondary focal plane, and it

is virtual and erect. If the object is virtual, its image in a

concave lens will be real and erect if the object lies between

the lens and the primary focal plane, but it will be virtual

and inverted if the object lies beyond the primary focal

plane.

If 2=MM' denotes the distance between a pair of con-

jugate axial points M, M', then u' = u-\-z, where u —AM,
u' = AM'. Substituting this value of u in the formula

l/u'—l/u = l/f, we obtain a quadratic in u, which implies,

therefore, that for a given value of the interval z between

object and image, there are always two positions of the

object-point M with respect to the lens (§ 89). But under

some circumstances the assigned value of the interval z

may be such that the roots of the quadratic prove to be

imaginary, and then it will be quite impossible with the

given lens to produce an image at the given distance z from

the object. For example, if the object lies in front of a

convex lens (/> 0) at a distance greater than the focal length,
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then u<0 and z>0. Put a =MA= -w, so that the magni-

tudes denoted by /, z and a are all positive. Eliminating

v! from the abscissa-formula, we obtain a quadratic in a

whose roots are given by the following expression:

s±Vz(s~4/).

which will be imaginary if (2—4/)< 0. Hence, the distance

(z) between a real object and its real image in a convex lens

cannot be less than four times the focal length f.

95. The Focal Lengths f, V of an Infinitely Thin Lens.—
The focal lengths of a thin lens are defined exactly in the

same way as the focal lengths of a spherical refracting sur-
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the ratio of the height of an object in the primary focal plane of

the lens to the apparent size of its infinitely distant image.

For example, in the diagram the image of the object FJ
lying in the primary focal plane is EM', which lying in the

infinitely distant plane of the image-space, subtends the

angle 0' = ZEF'J' = Z AF'H; and hence /' = FJ/tan 6' =
AH/tan 0' = F'A; so that the secondary focal length may
also be defined as the abscissa of the axial point A of an in-

finitely thin lens with respect to the secondary focal point F'.

And since F'A = -AF' = -FA, evidently:

Accordingly, the focal lengths (/, /') of a lens surrounded by

the same medium on both sides are equal in magnitude and

opposite in sign.

If the lens is reversed by turning it through 180° about

an axis perpendicular to the axis of the lens, that is, if the

light is made to traverse the lens in a sense exactly opposite

to that which it had at first, the focal lengths /, /' will not

be altered. This is evident from the fact that the expres-

sion for the focal length/, viz.,

J J
(n'-n) (r2~n)\

remains the same when -rh -r2 are substituted in place of

7*1, r2 , respectively. Thus, the character of the lens (§ 90)

and its action are not changed by presenting the opposite

face to the incident rays.

The focal length of an infinitely thin symmetric lens

n r
(§87), for which ri=~r2 = r (say) is f=^—f—r* and if

71= 1, w'=1.5, we find f=r. Accordingly, the focal length

of an infinitely thin symmetric glass lens surrounded by air

(n=l, n' =1.5) is equal to the radius of the first face. Spec-

tacle glasses were at first symmetric lenses, and in the old

inch system of designation a No. 10 spectacle glass, for ex-

ample, was a lens whose radius of curvature on each surface

was 10 inches and whose focal length was 10 inches.
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If one face of the lens is plane, for example, if r\= go
,

71 V 71 T
r2 = r, we find/= ——^— ; or if i\ = r, r2 = oo

, then/=n—n n—n
where in each case r denotes the radius of the curved sur-

face. Comparing this with the value of / obtained in the

preceding case, we see that if one of the faces of a symmetric

lens be ground off plane, the focal length of the lens will thereby

be doubled.

96. Central Collineation of Object-Space and Image-

Space.—Comparing the methods and results of this chap-

ter with those obtained in the preceding chapter, the serious

student cannot have failed to remark a striking parallelism

that exists between the imagery by paraxial rays in a spher-

ical refracting surface and the imagery under the same con-

ditions in an infinitely thin lens. In some instances the

formulae are actually identical, and a closer examination

will show that this similarity extends even to comparative

details. For, example, the focal points lie on opposite sides

of a lens just as they were found to do in the case of a spher-

ical refracting surface, and the resemblance goes still far-

ther. For in a spherical refracting surface the connection

between the focal lengths (/, /') and the indices of refraction

(n, n') is expressed by the formula n'.f-\-n.f' = (§79);

and if in this formula we put 7i' = n, we obtain the relation

/-f/
/ = 0, which is the algebraic statement of the fact that

the focal lengths of a lens surrounded by the same medium
on both sides are equal and opposite (§ 95)

.

It has already been pointed out that the imagery in a

spherical mirror may be regarded as a special case of refrac-

tion at a spherical surface (§§ 75, 77 and 78) ; and now it

is proposed to advance a step farther in this generalization

process and to show that all these types of imagery which

have been investigated separately and independently are

in reality embraced in a concept of geometry known as

collinear correspondence between one space and another

(called in the theory of optical imagery " object-space"
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and "image-space")- Moreover, these types of imagery

belong to a particularly simple kind of collinear correspond-

ence to which the name central collineation has been given.

A lens or an optical instrument is said to divide the sur-

rounding space into two parts, viz., the object-space and

the image-space; but these are not to be thought of as sep-

arate and distinct regions but as interpenetrating and in-

cluding each other; so that a point or ray may be regarded

at one time as belonging to the object-space and at another

time as belonging to the image-space, depending merely

on the point of view. Thus, for example, the infinitely

distant plane of space may be viewed as the image of the

primary focal plane of a lens, and then it is a part of the

image-space; but if the secondary focal plane is regarded

as the image of the infinitely distant plane, the latter is a

part of the object-space.

Now the distinguishing characteristics of the optical

imagery which is produced by the refraction of paraxial

rays at a single spherical surface or through an infinitely

thin lens may be summarized in the two following state-

ments:

(a) All straight lines joining pairs of conjugate points in-

tersect in one point, viz., the center (C) of the spherical re-

fracting surface or the optical center (A) of the thin lens.

This point which is the center of perspective of object-

space and image-space is called the center of collineation,

and will be referred to here as the point C.

(b) Any pair of corresponding incident and refracted rays

lying in a meridian plane meet in a straight line Ay called the

axis of collineation (or the y-eixis) which is perpendicular at

A to the optical axis (or the rc-axis)

.

Any straight line going through the center of collinea-

tion is called a central ray. Every central ray is a self-cor-

responding ray; that is, image-ray and corresponding object-

ray lie along one and the same straight line. Moreover,

any point lying on the axis of collineation is a self-conjugate
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point; that is, along this line object-point and image-point

are coincident with each other. The center of collineation

is also a self-conjugate point, and hence, in general, there are

two self-conjugate points on a central ray, viz., the center

of collineation and the point where the ray meets the axis

of collineation. Only in case the center of collineation lies

on the axis of collineation will there be only one self-conju-

gate or so-called double point on a central ray.

97. Central Collineation (cont'd). Geometrical Con-

structions.—Starting from these simple propositions, we
can easily develop a complete theory of optical imagery

for the simple cases mentioned above. Thus, for example,

Fig. 127.—Central collineation: Construction of pairs of conjugate points

M, M'; P, P'; Q, Q'; R, R'; S, S'; T, T'; and U, U'. Axis of collineation

Ay; center of collineation C.

being given the axis of collineation (Ay) and the center of col-

lineation (C), together with the positions of a pair of conjugate

points P, P', we can construct the position of a point Q' con-

jugate to a given point Q, as follows:

(a) In general, the straight line PQ (Fig. 127) will not

pass through the center of collineation. Let the self-

conjugate point in which the straight line PQ meets the

axis of collineation be designated by T; the image-ray cor-
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responding to the object-ray PT will lie along the straight

line TP', and since this ray must pass likewise through the

point Q' conjugate to Q, the required point will be at the

intersection of the straight lines TP', QC.

(b) But in the special case when the straight line PQ is

a central ray (Fig. 128) the construction which has just

been given fails, and we must resort to a different procedure,
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OG is drawn parallel to PP' meeting the axis of collineation

in G, and the required point I' is the point of intersection

of the straight lines GO' and PP'.

Similarly, the position of the object-point J conjugate

to the infinitely distant image-point J' of the central ray

PP' is found by drawing the straight line O'H parallel to

PP' meeting the axis of collineation in H; then the point

of intersection of the straight lines OH, PP' will be the re-

quired point J.

u

Fig. 129.—Central collineation: Straight line PQ passes through center

of collineation (C). Diagram shows case when C lies on axis of col-

lineation Ay, as in infinitely thin lens (c— 1).

The focal points F, F' on the optical axis are constructed

in precisely the same way as the two points J, I' on the

central ray PP'.

The special case when the center of collineation (C) lies on

the axis of collineation, that is, when the two points A and C
are coincident, is shown in Fig. 129, which evidently cor-

responds to the case of an infinitely thin lens surrounded

by the same medium on both sides.
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It would be easy to show by the methods of projective

geometry that the straight lines FJ, FT are parallel to

the axis of collineation and that we have the following re-

lations between the points J, I' and the two self-conjugate

points B, C on the central ray JF:

JB = CI', I'B = CJ, ^? = c,

where c denotes a constant called the invariant of central

collineation, which has the value n'\ n for a spherical re-

fracting surface and the value +1 for a thin lens surrounded

by the same medium on both sides. For a spherical mirror,

c = — 1. For the axial ray the above relations may be written

:

FA = CF', F'A = CF, ^ = c.AF
The reader who wishes to pursue this subject will find a

complete discussion at the end of Chapter V of the author's

Principles and Methods of Geometrical Optics published by

The Macmillan Company of New York.

98. Field of View of an Infinitely Thin Lens.—If it is

assumed that there are no artificial stops present except

in the plane of the lens, and that the imagery is produced

by means of paraxial rays only, the field of view in the case

of an observer looking through the lens along its axis is

easily determined by drawing the straight lines O'G, O'H

(Fig. 130, a and b) in a meridian plane of the lens from the

center 0' of the eye-pupil to the ends G, H of the diameter

of the lens-opening. For the lens-opening acts here just

like a round window or port-hole in an opaque wall to limit

the field of view in the image-space of the lens. If O desig-

nates the position of the axial object-point which is repro-

duced by the image-point O', then the straight lines OG, OH
determine the limits in the meridian plane of the diagram of

the field of view of the object-space. Let the straight line

B'C bisected at right angles at O' by the axis of the lens

represent the diameter of the pupil in the meridian plane of

the lens; and construct the line BOC whose image in the lens
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is the diameter B'O'C of the pupil of the eye. Then the

image S' of the luminous point S lying within the object-side

field of view may be constructed by drawing through S the

straight lines SB, SC to meet the lens in two points which

ENTRANCE
PUPIL

PUPIL OF EYE

S^%
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in the image-space. Assuming that the lens-opening is

large enough to permit the entire pupil of the eye to be filled

with rays emanating from an axial object-point, the lens-

opening GH acts as field-stop and the pupil of the eye as

aperture-stop (Chapter XII).

PROBLEMS

1. Show how to construct the optical center of a lens.

Draw diagrams for the various forms of convex and con-

cave lenses; and prove that the distance of the optical

center from the vertex of the first face is equal to rid/(ri— r2 ),

where rh r2 denote the radii of the two surfaces and d de-

notes the axial thickness of the lens.

2. In each of the following lenses the axial thickness is

2 cm. Find the position of the optical center, and draw

a diagram for each lens showing the position of this point.

(a) Double convex lens of radii 10 and 16 cm.; (6) Double

concave lens of radii 10 and 16 cm.; (c) Plano-convex lens;

(d) Positive meniscus of radii 10 and 16 cm.; (e) Negative

meniscus of radii 20 and 16 cm.; (/) Lens of zero curvature.

3. Rays of light diverging from a point one foot in front

of a thin lens are brought to a focus 4 inches beyond it.

Find the focal length. Ans. /=-f-3 inches.

4. An object is placed one foot in front of a thin convex

lens of focal length 9 inches. Where is the image formed?

Ans. 3 feet from the lens on the other side.

5. Rays coming from a point 6 inches in front of a thin

lens are converged to a point 18 inches on the other side of

the lens. Find the focal length. Ans. /= +4.5 inches.

6. An object is placed in front of a thin lens at a distance

of 30 cm. from it. The image is virtual and 10 cm. from

the lens. Find the focal length. Ans. /=— 15 cm.

7. The radius of the first face of a thin double convex

lens made of glass of index 1.5 is 20 cm. If the focal length

of the lens is 30 cm., what must be the radius of the second

face? Ans. 60 cm.
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8. A thin convex lens made of glass of index 1.5 has a

focal length of 12.5 cm. If the radius of the second face is

+ 17.5 cm., what is the radius of the first face? And if the

lens is concave, and the radius of the first face is +17.5 cm.,

what is the radius of the second face?

Ans. In both cases the radius is +4.6 cm.

9. The focal length of a double convex lens was found

to be 30.6 cm., and its radii 30.4 and 34.5 cm. Find the

index of refraction of the glass. Ans. 1.528.

10. The focal length of a glass lens in air is 5 inches.

What will be the focal length of the lens in water, assuming

that the indices of refraction of air, glass and water are 1,

| and
I-,

respectively? Ans. 20 inches.

11. Show that any thin lens which is thicker in the middle

than out towards the edges is convergent, provided the

lens-medium is more highly refracting than the surrounding

medium.

12. Show that the focal length of a thin plano-convex

lens is twice that of a double convex lens, if the curvatures

of the curved surfaces are all equal in magnitude.

13. Find the focal length of a thin double convex diamond

lens, of index 2.4875, the radius of each surface being 4 cm.

Ans. 13.4 mm.
14. The curved surface of a thin plano-convex lens of glass

of index 1.5 has a radius of 12 inches. Find its focal length.

What must be the radii of a symmetric double convex lens

of same material which has same focal length?

Ans. /=24 inches; r= 24 inches.

15. The radii of a thin double convex lens are 9 cm. and

12 cm. The lens is made of glass of index 1.5. If light di-

verges from a point 18 cm. in front of the lens, where will

it be focused? Ans. Real image, 24 cm. from lens.

16. A thin lens is made of glass of index n. If the focal

length of the lens in air is a, and if its focal length in a liquid

is 6, show that the index of refraction of the liquid is

bn

6+a(n~l)'
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17. Draw figures, approximately to scale, showing the

paths of the rays of light, and the positions of the images

formed when a luminous object is placed at a distance of

(a) 1 inch, (6) 6 inches from a convex lens of focal length

2 inches.

18. An object is placed 8 inches from a thin convex lens,

and its image is formed 24 inches on the other side of the lens.

If the object were moved nearer the lens until its distance

was 4 inches, where would the image be?

Ans. Virtual image, 1 foot from lens.

19. A virtual image of an object 30 cm. from a thin lens is

formed on the same side of the lens at a distance of 10 cm.

from it. Find the focal length of the lens.

Ans. /= ~ 15 cm.

20. Light converging towards a point M on the axis of

a lens is intercepted and focused at a point M' on the same

side of the lens as M. The distances of M and M' from the

lens are 5 cm. and 10 cm., respectively. Find the focal

length of the lens. Ans. /= — 10 cm.

21. A far-sighted person can see distinctly only at a dis-

tance of 40 cm. or more. How much will his range of dis-

tinct vision be increased by using spectacles of focal length

+32 cm.?

Ans. The spectacles will enable him to see distinctly

objects as near to his eye as 17.78 cm., so that his range of

distinct vision will be increased by 22.22 cm.

22. The projection lens of a lantern has a focal length of

one foot. If the screen is 1024 feet away, how far back of

the lens must the glass slide be placed? Ans. 1024/1023 ft.

23. An engraver uses a magnifying glass of focal length

+4 inches, holding it close to the eye. At what distance

must the lens be from the work so that the magnification

may be fourfold? Ans. 3 inches.

24. Assuming that the optical system of the eye is equiva-

lent to a thin convex lens of focal length 15 mm., what will
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be the size of the retinal image of a child 1 meter high at a

distance of 15 meters from the eye? Ans. 1 mm.
25. A millimeter scale is placed at a distance of 84 cm.

in front of a convex lens, and it was found that 10 mm. of

the scale corresponded to 29 mm. of its real inverted image.

Find the focal length of the lens. Ans. /= +62.5 cm.

26. If X, X' and Y, Y' are two pairs of conjugate points

on the axis of an infinitely thin lens, and if the lens is mid-

way between X and Y', show that it is also midway be-

tween X' and Y.

27. M and M' are a pair of conjugate axial points with

respect to an infinitely thin lens whose optical center is at

a point designated by A. Show that when the lens is shifted

from A to a point B such that MB=AM', the points M
and M' will be conjugate to each other with respect to the

lens in this new position.

28. Given the positions of the focal points F, F' of an

infinitely thin lens, show how to construct the image-point

M' conjugate to an axial object-point M. Draw diagrams

for convex and concave lenses.

29. At the optical center (A) of a thin lens erect a per-

pendicular to the axis of the lens, and take a point L on

this perpendicular such that AL=/, where / denotes the

primary focal length. Through A draw a line AP in such

a direction that ZF'AP = 45°, where F' designates the sec-

ondary focal point of the lens. Take a point M on the axis

of the lens, and draw the straight line ML meeting the

straight line AP in a point S. If M' designates the foot of

the perpendicular let fall from S to the axis of the lens,

show that M, M' are a pair of conjugate axial points. Draw
two diagrams, one for a convex and the other for a concave

lens.

30. Derive the image-equations in the case of an infinitely

thin lens in the form : l/u' = \ju-\- 1//, y'/y = u'\u.

31. Show that the focal points of an infinitely thin lens

are at equal distances on opposite sides of the lens.
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32. A candle is placed at a distance of 2 meters from a

wall, and when a lens is placed between the candle and the

wall at a distance of 50 cm. from the candle, a distinct image

of the latter is cast upon the wall. Find the focal length of

the lens and the magnification of the image.

Ans. /=37.5 cm.; image is 3 times as large as object.

33. The distance between a real object and its real image

in an infinitely thin lens is 32 inches. If the image is 3 times

as large as the object, find the position and focal length of

the lens.

Ans. The lens is a convex lens of focal length 6 inches

placed between object and image at a distance of 8 inches

from the object.

34. When an object is held at a distance of 6 cm. from

one face of a thin lens, the image of the object formed by

reflection in this face is found to lie in the same plane as the

object. If the object is placed at a distance of 20 cm. from

the lens, the image produced by the lens is inverted and of

the same size as the object. The lens is made of glass of

index 1.5. Find the radii of the two surfaces.

Ans. The lens is a convex meniscus of radii 6 and |4 cm.

35. In a magic lantern the image of the slide is thrown

upon a screen by means of a thin convex lens. Show that

the adjustment for focusing is always possible provided

that the distance from the slide to the screen is not less

than 4 times the focal length of the lens, and provided that

the lens can move in its tube to a distance from the slide

equal to twice the focal length.

36. A person holds a lens in front of his eye and ob-

serves that by reflection at the nearer surface an object

which is 6 feet from the lens appears upright and diminished

to one-twentieth of its height. Looking through the lens

at an object on the other side 6 feet from the lens, its image

is inverted and diminished in height to one-tenth. The
lens is a glass lens of index 1.5. Find the radii of its sur-

faces. Ans. A double convex lens of radii || and 44 ft.
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37. How far from a lens must an object be placed so

that its image will be erect and half as high as the object?

Ans. The object must be in the second focal plane of the

lens. (Draw diagram showing construction of image for

convex lens and also a diagram for concave lens.)

38. How far from a thin lens must an object be placed

so that its image will be inverted and half as high as the

object? Draw two diagrams, showing construction of image

for convex lens and for concave lens.

Ans. If the optical center of the lens and the primary

focal point are designated by A and F, respectively, and if

the axial point of the object is designated by M, then

AM = 3AF.

39. An object is to be placed in front of a convex lens of

focal length 18 inches in such a position that its image is

magnified 3 times. Find the two possible positions, and

draw diagram for each position showing the construction

of the image.

Ans. If image is inverted, object must be 2 ft. from lens;

if it is erect, object must be 1 ft. from lens.

40. In the preceding example if the lens were concave,

where would the object have to be?

Ans. The object would be virtual, at a distance of 1 ft.

from the lens for an erect image, and at a distance of 2 ft.

for an inverted image.

41. A person can see distinctly at a distance of 1 foot,

and he finds that when he holds a certain lens close to his

eye small objects are seen distinctly and magnified 6 times.

Find the focal length of the lens. Ans. /= +2.4 inches.

42. Derive the Newtonian formula x.x' =—f
2 for a lens.

43. A convex lens is used to produce an image of a fixed

object on a fixed screen. Show that, in general, there will

be two possible positions of the lens, and prove that the

height of the object is the geometrical mean between the

heights of the two images.

44. A copper cent is 19 mm. in diameter and a silver
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half dollar is 30.4 mm. in diameter. How far from a con-

vex lens of focal length 10 cm. must the smaller coin be

placed so that its image in the lens will be just the size of

the larger one?

Ans. It must be placed in front of the lens at a distance

of either 16.25 cm. or 3.75 cm.

45. What must be the radius of the curved surface of a

thin plano-convex lens made of glass of index 1.5 which

will give a real image of an object placed 2 cm. in front of

the lens and magnified 3 times? Ans. 9 mm.
46. Find the magnification of a convex lens of focal

length 0.2 inch for an eye whose distance of most distinct

vision is 14 inches. Ans. 71 times.

47. An object is placed in front of a convex lens at a dis-

tance from it equal to 1.5 times the focal length. Find the

linear magnification. If the object is removed to twice this

distance, what will be the magnification? Ans. - 2; — |.

48. An object 5 cm. high is placed 12 cm. in front of a

thin lens of focal length 8 cm. Find the position, size and

nature of the image (a) for a convex lens, and (6) for a

concave lens; and draw accurate diagram for each case.

Ans. (a) Real, inverted image, 10 cm. high, 24 cm. from

lens; (6) Virtual, erect image, 2 cm. high, 4.8 cm. from

lens.

49. When an object is placed at a point R on the axis of

a thin lens of focal length /, the image is erect, and when

the object is moved to a point S the image is the same size

as before but inverted; show that

m
where m is a positive number denoting the value of the

ratio of the size of the image to that of the object.

50. A screen, placed at right angles to the axis of a thin

lens of focal length /, receives the image of a small object.

If the image is 20 times as large as the object, show that

the distance of the screen from the lens is equal to 21/.
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51. Given a convex lens, a concave lens, a concave mirror

and a convex mirror, each of focal length 20 cm. An object

is placed in front of each in turn at distances of 40, 20 and

10 cm. Draw diagrams showing the construction of the

image for each lens and each mirror and for each of the

three given positions of the object; and find the position

and character of the image in each case.

52. A plane mirror is placed anywhere behind a convex

lens with its plane at right angles to the axis of the lens.

A needle is set up perpendicular to the axis in the primary

focal plane of the lens. Show that the image of the needle

produced by rays that have passed twice through the lens

will lie also in the primary focal plane and will be of the

same size as the object but inverted.

53. An object is placed in front of a thin convex lens at

a distance a from it not greater than twice its focal length /;

and a plane mirror is adjusted in the secondary focal plane

of the lens. Show that a real image formed by rays which

have passed twice through the lens will be formed at a dis-

tance b in front of the lens; and that f=(a-\-b)/2. Show
also that the image is of the same size as the object but in-

verted. Draw a diagram showing the construction of the

image.

54. A convex lens of focal length 10 cm. is placed at a

distance of 2 cm. in front of a plane mirror which is per-

pendicular to the axis of the lens. Where must an eye be

placed in front of the lens so that it may see its own image

by means of rays which, after having traversed the lens

twice, return into the eye as bundles of parallel rays?

Ans. 3.75 cm. from the lens.

55. A thin convex lens of focal length 10 inches is placed

in front of a concave mirror of focal length 5 inches. The
distance between the lens and the mirror is 10 inches. An
object is placed in front of the lens at any distance from it.

Show that its image formed by rays which have passed

twice through the lens will lie at an equal distance from the
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lens on the other side of it, and that it will be of the same
size as the object but inverted.

56. A thin convex lens of focal length 12 inches is placed

12 inches in front of a concave mirror of focal length 8 inches.

An object is placed 3 inches in front of the lens. Show that

its image formed by rays which have passed twice through

the lens is in the same plane as the object and of the same
size, but inverted.

57. The focal length of a thin symmetric double concave

lens made of glass of index 1.5 is five inches. A luminous

point lies on the axis so far away that it may be considered

as being at infinity. Prove that its image formed by rays

which are reflected at the first surface is 2.5 inches in front

of the lens; the image formed by rays which are refracted

twice at the first surface and reflected once at the second

surface is on the other side of the lens at a distance of 1.25

inches from it; and, finally, the image formed by rays which

after being reflected twice at the second surface have emerged

again into the surrounding air is 0.5 inch from the lens on

the side away from the source.

58. A concave mirror, of radius r, has its center at the

optical center of a thin lens, of focal length /, and the axes

of lens and mirror are in the same straight line. Rays com-
ing from an axial object point at a distance u from the lens

traverse the lens and after being reflected at the mirror

pass through the lens again and emerge from it as a bundle

of rays parallel to the axis. Prove that

W=o.
u r f



CHAPTER VIII

CHANGE OF CURVATURE OF THE WAVE-FRONT IN REFLEC-

TION AND REFRACTION. DIOPTRY SYSTEM

99. Concerning Curvature and its Measure.—Since the

rays or lines of advance of the light-waves are always at

right angles to the wave-surface (§ 7), one way of investi-

gating the procedure of light is to study the form of the

wave-surface; for, in general, the effect of reflection and re-

fraction will be to produce an abrupt change of curvature

of the wave-front. In this method attention is concen-

trated primarily on the wave-surface rather than on the

rays themselves; but in reality the only difference between

it and the ray-method consists in a new point of view, which

may, however, be serviceable. Thus, when a plane wave

is incident on a lens, the wave-front on emergence will no

longer be plane but curved in such fashion that the light-

waves either converge to or diverge from a point in the second

focal plane of the lens. The effect of the lens or optical

system is to imprint a new curvature on the wave-front,

and if the change of curvature which is thus produced can

be ascertained, the final form of the wave can be determined

by mere algebraic addition of the initial and impressed

curvatures. It will be necessary, however, to explain pre-

cisely what is meant by this term curvature and how it is

measured.

In passing along an arc of a plane curve from a point A
(Fig. 131) to a point B, the total curvature of the arc AB is

the change of direction of the curve between A and B, which

is evidently measured by the angle between the tangents

to the curve at these two places. This angle is equal to

the angle at O between the normals AO and BO which are

258
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perpendicular to the tangents at A and B. The mean curva-

ture between A and B is the change of this angle per unit

length of the arc AB. If, therefore, the length of the arc

AB is denoted by a and the magnitude of the angle BOA

Fig. 131.—Mean curvature of arc AB measured by
<P/a, where a-denotes length of arc and <f> denotes

angle between the normals AO and BO.

by <p, the mean curvature between A and B is equal to (pja.

And the limiting value of this quotient when the point B is

infinitely near to A is the measure of the actual curvature

at the point A or, as we say, the curvature at A. If the curva-

ture at A is denoted by the capital letter R, then R is equal

to the Umiting value of <p/a when the arc a is indefinitely

small.

In Fig. 132 the point B is supposed to be infinitely near

to A; and the point of intersection C of the normals drawn
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to the two contiguous points A, B on the curve passing

through these two points is called the center of curvature

of the curve at the point A; the circle described in the

plane of the curve around this point C as center with radius

Fig. 132, a and b.—Curvature of arc BAB at point A midway between

B and B is measured by the sagitta AD. (a) Convex, (b) Concave arc.

r= AC, which will coincide with the given curve throughout

the infinitely small arc AB, is called the circle of curvature

and its radius r is called the radius of curvature at the point

A. Now since by definition the angle <p is equal to the arc

BA divided by the radius r, that is, since <p =a/r, the

curvature at A is equal to l/r; that is, the curvature at any

point on a curve is equal to the reciprocal of the radius of curva-

ture at that point, or

r

The sign of the curvature is the same as that of the radius

of curvature. Accordingly, if the surface is convex with re-

spect to the incident light, the curvature is to be counted as posi-

tive, in accordance with our previous usage in this respect.
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Thus, for example, when spherical waves spread out from

a point-source, the wave-front at any instant is concave

and its curvature is reckoned, therefore, as negative. If a

convex lens is interposed at a distance from the point-source

greater than its focal length, the light-waves will thereby

be converged to a focus on the other side of the lens whence

they will ultimately diverge again. While the wave-front

is advancing from the lens to the focus, its curvature is pos-

itive; at the focus itself the wave-front collapses into a point,

the curvature of the wave at this place being infinite; and

beyond the focus the curvature becomes negative. As long

as the wave does not undergo any reflection or refraction,

its curvature varies continuously; whereas a sudden change

of curvature is imprinted on the wave when there is a transi-

tion from one medium to another.

Another method of measuring the curvature of a small

arc BB (Fig. 132) is in terms of its bulge AD, where the

points designated by A and D are the middle points of the

arc and its chord. If the points A and B are so close to-

gether that they may be regarded as lying on the circle of

curvature corresponding to the point A, the ordinate DB = h

will be a mean proportional between the two segments into

which the diameter of the circle is divided by the point D,

so that we have the proportion

:

XD:h = h:(2r~AD).
Since the segment AD is always very small in comparison

with the diameter of the circle of curvature, only a vanish-

ingly small error will be introduced by writing 2r in place

of (2r—AD) in the above proportion. Thus, we obtain:

h 2

or since R = 1/r,

AD
=2r'

h 2

ad- | a
If the arc BB is not infinitely small, this equation contains

a certain error which is more and more negligible in pro-
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portion as the arc is taken smaller and smaller. For a small

arc, therefore, we may say that the segment AD is propor-

tional to the curvature (R) at the point A, and hence it

may be said to measure the curvature at this place. This

segment AD was called by Kepler the sagitta of the arc

BB because of its resemblance to an "arrow" on a bow.

Fig. 133.—Curvatures of arcs

BAB and BKB are in same
ratio as their sagittae AD
and KD.

Fig. 134.—Curvatures of

arcs AP and AQ in

same ratio as their

sagittae VP and VQ.

Obviously, it does measure the bulge or " sag " of the curve

at A. In Fig. 133, where the straight line BDB is the com-

mon chord of the small arcs BAB and BKB, the curvatures

at A and K are evidently in the ratio of AD to KD. Or,

again, consider Fig. 134, where the two arcs AP and AQ
have a common tangent at A. If on this tangent a point V
is taken very close to A, and if through V a straight line is

drawn perpendicular to AV intersecting the two arcs in
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the points designated by P and Q, the curvatures at A will

be in the ratio of VP to VQ.

In many optical problems (as has been explained in the

last two chapters) we are concerned only with a very small

portion of the reflecting and

refracting surface (case of

paraxial rays), and under

such circumstances it is

especially convenient and

simple to measure the curv-

atures of the wave-fronts

before and after refraction

or reflection and the curva-

tures of the mirrors or

lenses by means of their

sagittae. In fact, the ordi-

nary method of determining

the curvature of an optical

surface with an instru-

ment called a spherometer

(Fig. 135) consists essen-

tially in employing a mi-

crometer screw to measure the sagitta of the arc whose

chord is equal to the diameter of the circle circumscribed

about the equilateral triangle formed by the conical points

of the tripod which supports the instrument on the curved

surface to be measured. The simple lens-gauge (Fig. 136)

used by opticians to measure the power of a spectacle lens

is based on the same principle. In size and external ap-

pearance it resembles a watch, except that on its lower side

it has three metallic pins projecting from it in parallel lines

which all lie in a plane parallel to the face of the gauge. The

two outer pins are stationary and symmetrically placed so that

when the instrument is held in a vertical plane with the pins

pointing downwards, the straight line BB (Fig. 132) joining

the conical points of the outer pins is horizontal; whereas

Fig. 135.—Spherometer.
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the other pin which is midway between the two outer ones

is capable of being pushed upwards by a slight pressure so

that its tip A which left to itself falls a little below the

straight line BB can be made to ascend a little above this

line. The vertical dis-

placement of the tip A of

the middle pin above or

below the level of the

chord BB, which is equal

to the sagitta of the arc

BAB whose curvature is

to be measured, is regis-

tered on the dial (see

§ 108) by the angular

movement of a light hand

or pointer with which the

movable pin is connected.

If the circle is drawn

which passes through the

end-points of the three

pins B, A and B, the

diameter drawn through A will bisect the chord BB at a

point D; and since the products of the segments of two

intersecting chords of a circle are equal, we obtain imme-
diately :

AD (2r-AD)=h2
,

where r denotes the radius of the circle and 2h= chord BB.
Hence, exactly as above, we obtain here also:

h 2

AD= — , approximately;

thus proving again that the sagitta AD is proportional to

the curvature l/r = R. In using the lens-gauge care must

be taken to see that the plane of the instrument is not tilted

out of the vertical, and this is one reason why a spherometer

is more accurate. On the other hand, the lens-gauge, be-

sides being more handy and convenient, possesses a de-

Fig. 136.—Lens-gauge.
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cided advantage over a spherometer supported on a tripod

by reason of the fact that it can be used to measure the

curvatures in different meridians of a non-spherical surface

of revolution, for example, the curvatures of the normal

sections (§ 111) of a cylindrical or of a toric surface (§ 112).

How the lens-gauge is graduated will be explained presently

(§ 108).

100. Refraction of a Spherical Wave at a Plane Surface.

—The whole duty of an optical system, therefore, whether

z
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in the corresponding problems concerning the reflection

and refraction of paraxial rays. In fact, according to this

method, these results should be found to apply not merely

to the case when the reflecting and refracting surfaces are

plane or spherical, but equally also to the more general

case when these surfaces have any form whatever, provided

they are symmetrical around the optical axis.
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has begun to affect a point B on this surface the incident

wave will be represented in the plane of the figure by the

circular arc BJB described around M as center with radius

equal to BM; the point designated by J lying on the arc

midway between its two ends B, B, so that the straight

line MJ is the perpendicular bisector at A of the chord BB.
The two points M, J will be found to lie always on opposite

GLASS

Fig. 137, c.—Divergent spherical waves refracted at plane

surface from glass to air.

sides of the refracting plane. In Fig. 137, a and c, where the

point M is shown as lying in front of the surface ZZ, the

arc BJB is indicated by a dotted line, because it marks the

position which the incident wave-front would have had

if the refracting surface had not been interposed. But

the waves travel faster in the rarer medium (air) than in

the denser medium (glass); and, consequently, the vertex

of the refracted wave-front instead of being at the point J
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on the axis will be at a point K on this line, and therefore

the position of the refracted wave-front at the moment

when the disturbance arrives at B will be represented by

the arc BKB of a circle whose center is at a point M'

on the axis. If, for example, the waves are refracted from

air to glass, that is, if n'>n
t
the velocity v in the first me-
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it follows that

.KA = n.JA.

Now JA and KA are the sagittce (§ 99) of the small arcs

BJB and BKB, respectively, and hence they are propor-

tional to the curvatures of these arcs, that is, to l/JM and

1/KM'. If the point B is infinitely near to A, we may put

JM =AM = u, KM'= AM' = <- and thus we obtain:

u u
which will be recognized as the relation which we found

for the refraction of paraxial rays at a plane surface (§41).

101. Refraction of a Spherical Wave at a Spherical Sur-

face.—Here the same method is employed as in the preced-

Fig. 138, a. -Divergent spherical waves refracted at convex surface

from air to glass.

ing section. In each of the diagrams (Fig. 138, a, b, c, d,

e, f, g, and h) the circular arc ZZ represents the trace in the

plane of the paper of a meridian section of the spherical

refracting surface with its vertex at A and center at C. The
surface is convex in Fig. 138, a, b, c, and d and concave in

Fig. 138, e, f, g, and h. The point M on the axis is the center

of a system of spherical waves which are advancing in the

first medium, of index n, towards the refracting surface.

In Fig. 138, a, c, e, and g the point M lies in front of the re-
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fracting surface, whereas in Fig. 138, b, d, f, and h this point

is situated on the other side of the surface. The points
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ance begins to affect the points B, B; the point where this

arc crosses the optical axis being designated by J.
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supposed to be less highly refracting than the first {n'<n).

The center of curvature of the refracted waves will lie at

GLASS

Fig. 138, /.—Convergent spherical waves refracted at concave
surface from air to glass.

a point M' on the axis, so that the wave-front in the second

medium which passes through B, B will be represented by
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BJB and BKB is shown by a dotted line, because, on ac-

count of the interposition of the refracting surface ZZ, the

part of one or the other of these wave-fronts which is com-

prised between B, B does not actually materialize; but this

circumstance does not in the least affect the geometrical

relations.

Thus, during the time the light takes to go in the first

medium from J to A (or from A to J), it will travel in the

Fig. 138, h.—Convergent spherical waves refracted at

concave surface from glass to air.

second medium from K to A (or from A to K). In other

words, the optical lengths (§ 39) of the axial line-segments

AJ and AK are equal, and therefore

:

n.AJ = n.AK.

This shows how the position of the point IVT may be found,

for we have only to lay off on the axis a piece

AK=-,AJ,
n

and to locate the point M' at the place where the perpendic-

ular bisector of the chord BK intersects the optical axis.

Draw the chord BDB crossing the optical axis at right
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angles at the point D; then, evidently, since

AJ =AD+DJ =AD-JD, AE>AD+DK =AD-KD,
we have: n(AD-JD) = n'(AD-KD).
Now recalling the fact that the points B, B were assumed

to be very close to the vertex A of the spherical refracting

surface, we remark that the arcs whose summits are at A, J

and K are all very small; and hence the segments AD, JD
and KD may be regarded as the sagittce of these arcs and

proportional to their curvatures (§ 99), viz., l/r, 1/u and

1/u', respectively, where r= AC, w =AM = JM, u' = AM'
= KM', approximately. Introducing these values in the

equation above, we obtain the characteristic invariant re-

lation for the case of the refraction of paraxial rays at a

spherical surface, viz.,

(i_lW(I_l,)
\r u) \r u /

in the same form as was found in § 78.

102. Reflection of a Spherical Wave at a Spherical Mir-

ror.—The problem of reflection at a spherical mirror may

Fig. 139, a.—Divergent spherical waves reflected at convex mirror.

be investigated in the same way. In Fig. 139, a and b,

the arcs BAB, BJB and BKB represent the traces of the

mirror and of the wave-fronts of the incident and reflected
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waves, respectively. In the case of reflection the condition

evidently is

:

KA = AJ,

because while the incident wave advances along the optical

axis through the distance AJ or JA, the reflected wave will

travel in the opposite direction through an equal distance

Fig. 139, b.—Divergent spherical waves reflected at concave mirror.

KA or AK. Therefore the center M' of the reflected wave

may be found by laying off AK = JA and locating the point

where the perpendicular bisector of the chord KB inter-

sects the axis.

Here also the segments AD, JD and KD are to be re-

garded as the measures of the curvatures of the small arcs

BAB, BJB and BKB, respectively, and proportional, there-

fore, to the reciprocals of the radii of curvature, viz., l/r,

1/m and 1/V, where r = AC, u=AM=JM, u'=AM'=KM'
in the limit when the arcs are infinitely small. Now

KD =KA+AD =AJ+AD=AD+DJ+AD,
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that is,

JD+KD = 2AD;
hence, substituting the symbols u, v! and r, we derive the

abscissa-formula for the reflection of paraxial rays at a

spherical mirror (§ 64), viz.,

2+1 = 2
.

u u r

which may be expressed in words by saying that the curva-

ture of the mirror is the arithmetical mean of the curvatures

of the incident and reflected waves at the vertex of the mirror;

that is,

R 2-'

where U=l/u, U' = l/u' denote the curvatures of the in-

cident and reflected waves, and R = l/r denotes the curva-

ture of the mirror. Thus, for example, if an incident plane

wave (U = 0) is advancing parallel to the axis of the mirror,

the curvature of the reflected wave will be twice that of

the mirror, and consequently, the center F of the reflected

wave-front will lie midway between the vertex A and the

center C of the mirror (§ 69).

Of course, the condition KA = AJ might have been de-

rived at once from the condition n.AJ = n'.XK, which was

found in § 101, by putting in this equation n'=—n, in ac-

cordance with the general rule given in § 75.

103. Refraction of a Spherical Wave through an In-

finitely Thin Lens.—Since, as has been shown (§ 89), a

homocentric bundle of incident paraxial rays with its ver-

tex at a point M on the axis of a thin lens is transformed

into a homocentric bundle of emergent rays with its vertex

at the conjugate point M', we know that if the waves are

spherical before traversing the lens, they will issue from it

as spherical waves, at least in the neighborhood of the axis.

Each of the diagrams (Fig. 140, a and b) represents a

meridian section of the lens which is convex in one figure

and concave in the other. As a matter of fact the lens is
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assumed to be infinitely thin, and perhaps it is well to call

particular attention to this fundamental consideration, be-

cause in the diagrams, in order to exhibit the relations by

means of the sagittce, the lens-thickness is shown very much
exaggerated.

Fig. 140, a.—Divergent spherical waves refracted through thin convex lens.

Take a point Bi on the first surface of the lens not very

far from the vertex Ai of this surface, and around the axial

object-point M as center with radius equal to BiM describe

the circular arc BiJBi which is bisected by the axis of the

lens in the point designated by J; evidently, this arc will

represent the trace in the plane of the diagram of the wave-

front of the incident waves at the moment when the dis-

turbance reaches Bi. Now the disturbance which is propa-

gated onwards from Bi will proceed across the lens to a

point B2 on the second face of the lens, and since the lens

is supposed to be infinitely thin, the distances of Bi, B2

from the axis are to be regarded as equal, that is, DiBi =
D2B2 , where Di, D2 , designate the feet of the perpendicu-

lars let fall from Bi, B2 , respectively, to the axis of the

lens. If, therefore, around the point M' conjugate to M
an arc B 2KB 2 is described with radius equal to B 2M', which

is bisected by the axis at the point designated by K, this

arc will represent the trace in the plane of the diagram of

the wave-front of the emergent waves at the same instant
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that the arc B1JB1 shows the wave-front of the incident

waves.

With M, M' as centers and with any convenient radii

describe also the arcs GH, SL intersecting the axis of the

Fig. 140, b.—Divergent spherical waves refracted through thin concave lens.

lens at G, S and meeting the straight lines BiM, B2M', in

H, L, respectively; so that these arcs represent, therefore,

successive positions of the wave-front before and after

transmission through the lens. Now the optical length of

the light-path from H to L is equal to that along the axis

of the lens from G to S (§ 39); and, hence, if n, n' denote

the indices of refraction of the two media concerned, we
may write

:

n.HBi+n,
.B 1B 2+n.B 2L = n.GAi+n,.AiA2+n.A2S;

and since

n(MH+LM') =n(MG+SM0,
we obtain by addition of these two equations

:

n(MB 1-fB2M ,)+n ,
.B 1B2 =n(MAi+A2M ,)+n ,.AiA2 .

Now MBi = MJ, B 2M' = KM', B 1B2 =D 1D2 ;

and therefore:

w(MJ-MAi+KM-A2M') = n'(AfA2-DiD2)

.
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Substituting in this equation the following expressions, viz.

:

MJ-MAi = AiM+MJ = AJ = AiDd-DiJ = A1D1-JD1,

KM'-A2M' = KM'+M'A2 = KA2 = KD2+D2A2

= KD2-A2D2 ,

AiA2 =AiDi+DiD2+D2A2 =AiDi+DiD2-A2D2 ,

we obtain

:

n(AiDi-JD 1+KD2-A2D2)=n ,(AiDi-A2D2);

which may be put finally in the following form:

w(KD2 -JDi) = (n'-n) (AiDi-A2D2).

It has been assumed here that the lens is surrounded by

the same medium (n) on both sides, but the same method

would lead to a more general formula for which the initial

and final media were different.

Evidently, since the points Bi, B 2 are very near the verti-

ces Ai, A2 , the segments A1D1, JDi, A2D2 , KD2 may be re-

garded as the sagittce of the small arcs B1A1B1, B1JB1,

B2A2B2 , B2KB 2 , respectively; and since these arcs all have

equal chords, the reciprocals of the radii of curvature may be

substituted in the equation above in place of the sagittce.

Accordingly, if the radii of the lens-surfaces are denoted

by n, r2 , and if we put AM =JM = w, A2M/=KM'=w'
J
as

is permissible in this case, we derive immediately the fa-

miliar lens-formula for the refraction of paraxial rays (§ 89),

viz.:

W ul \ri r2/ f
where / denotes the primary focal length of the lens.

104. Reduced Distance.—If P, Q designate the positions

of two points lying both in the same medium of refractive

index n, el distinction has already been pointed out (see § 39)

between the actual or absolute distance of these points from

each other and the so-called " optical length" of the seg-

ment PQ of the straight line joining these points, which

is obtained by multiplying the absolute length by the index

of refraction of the medium, and which is equal therefore

to n.PQ. A further distinction, due originally to Gauss,
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is to be made now by employing the term reduced distance

between P and Q to mean, not the product, but the quo-

tient of the distance PQ by the index of refraction of the medium

in which the two points P and Q lie; that is, the reduced dis-

PQ
tance from P to Q is equal to —— . Thus, for example, if

the medium is glass of index 1.5, and if the distance PQ=
12 inches, the optical distance or equivalent light-path in

air will be 18 inches, whereas the reduced distance will be

8 inches. The reduced thickness of a lens is c= -, where
n

d = AiA2 denotes the distance of the second vertex A2 of

the lens from the first vertex Ai and n denotes the index of

refraction of the lens-substance. The optical distance is

never less, and the reduced distance is never greater, than

the actual distance. If the medium is air (n=l), the op-

tical distance and the reduced distance are both equal to

the absolute distance. Apparently, the first use of the term

"reduced distance" in this sense in English occurs in

Pendlebury's Lenses and systems of lenses, treated after

the manner of Gauss (Cambridge, 1884). A distinct ad-

vantage in the direction of simplification is usually gained

in mathematical formulation by denoting a more or less

complex function by a single symbol; and modern optical

writers, notably Gullstrand and his disciples in Germany,

have recognized the convenience of this idea of " reduced

distance" and utilized it to express the relations between

object and image in their simplest forms; as we shall show

presently by several examples.

In this connection the attention of the student needs to

be called to a point which has been alluded to before (see

§ 8), but which is not always clearly understood. Although

two points P, Q may be situated physically in different

media, they may be regarded as optically in the same me-

dium. Thus, any point which is on the prolongation, in

either direction, of the line-segment which represents the
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actual path of a ray of light through a certain medium, may,

and in fact generally must, be regarded as a point belonging

to the medium in question, no matter what may be its ac-

tual physical environment. No better illustration of this

notion can be given than is afforded by considering the

focal points on the axis of a spherical refracting surface.

The points F and F' lie always on opposite sides of the ver-

tex A, but no matter whether the first focal point F is

on one side of A or on the other, it is to be considered

always as a point in the first medium; and, similarly,

the second focal point F' is to be considered always as

a point in the second medium, so that the reduced dis-

tance between F and F' is FA/n+AF'/n' both for a conver-

gent and for a divergent system. The reduced focal lengths

f f
of a spherical refracting surface are - and —.; so that the^ n n

f f
reduced distance of F' from F is equal to - - —, .

n n

The boundary between two optical media is a "twilight

zone," so to speak, which cannot be said properly to be-

long to either medium; and hence linear magnitudes which

refer specifically to the interface or surface of separation

cannot be definitely assigned to one medium or the other.

This applies, for example, to the radius of curvature of a

mirror or of a refracting surface. Whether a surface which

separates air from glass is convex or concave, we have no

right to say that the radius of curvature lies in the air or

in the glass; and thus we never speak of the "reduced ra-

dius" of a reflecting or refracting surface.

105. The Refracting Power.—In the w-form of the ab-

scissa-equation which gives the relation between a pair of con-

jugate points on the axis, we are concerned not so much with

the linear magnitudes themselves, that is, with the abscissa,

as with the reciprocals of these magnitudes, which, as we

have seen, represent the curvatures of the surfaces of which

these abscissa? are the radii. It is partly for this reason
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that many teachers of geometrical optics regard the so-

called " curvature method" of studying these problems as

both more natural and more direct than the "ray method."

There is certainly much to be said in its favor, but the truth

is, both methods have their advantages, and neither is to

be preferred to the other. The student who desires to have

more than a mere elementary knowledge of optics will find

it necessary to be acquainted with both points of view; and

when he has attained this position, he will realize that the

two methods are perfectly equivalent and that the distinc-

tion between them is more or less artificial.

But whether we have the so-called "curvature method"
in mind or not, it will evidently be a step in the direction of

simplifying the abscissae-formula if we introduce symbols

for the reciprocals of the abscissae, and thereby get rid of

the fractional forms. Thus, instead of employing the re-

duced focal length, it will be better to introduce a term for

the reciprocal of this magnitude. Accordingly, the refract-

ing power of an optical system is defined to be the reciprocal

of the reduced primary focal length. These reciprocal mag-

nitudes will be denoted by capital italic letters. For ex-

ample, the refracting power of an optical system will be de-

noted by F; that is, according to the above definition:

The refracting power of a spherical refracting surface (see

§79) is:

F= -

f
=~j, = (n'-n)R,

where R= - denotes the curvature of the surface. If the
r

first medium is air (n= l), then F=j. The refracting power

of a spherical refracting surface is directly proportional to

the curvature of the surface.
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The reflecting power of a spherical mirror {n
f = — n, /'=/)

is defined in the same way, viz.,

F= - = -2n.R,

where n denotes the index of refraction of the medium in

front of the mirror. Thus, although the position of the

focal point (F) and the magnitude of the focal length (/) of

a curved mirror will not be altered by changing the medium
in front of the mirror, its reflecting power will be affected;

and this will be the case whether the mirror is concave or

convex. If the focal length of a mirror is 8, its reflecting

power will be one-eighth when the mirror is in contact with

air (n=l), but it will be raised to one-sixth if the medium
in front of the mirror is water (n= 4)

.

The refracting power of a lens surrounded by the same

medium (ri) on both sides is

F =^=-^
f

/''

If the curvatures of the two faces of an infinitely thin lens

are denoted by Ri and R2) that is, if

Ri = — , R2 = —
,

ri r 2

then

F=(n'-n) (Ri-R2),

where n' denotes the index of refraction of the lens-substance

and n denotes the index of refraction of the surrounding

medium. If either one of these media is changed, other

things remaining the same, the refracting power of the lens

will be altered.

If F\, F2 denote the refracting powers of the two surfaces

of a lens, then

F^tn'-^Ri, F2 = (n-n')R2 ,

and in place of the preceding equation we may write

:

F = F 1+F2 ;

and thus it appears that the refracting power of an infinitely
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thin lens is equal to the algebraic sum of the refracting powers

of the lens-surfaces.

The refracting power of a lens depends, therefore, on

the curvatures of both faces, but evidently a lens of given

material and of prescribed refracting power may have very

different forms. One of the minor problems of optical

construction is to "bend" a lens, as the technicab phrase

is, that is, being given the curvature of one face of the lens,

to find the curvature of the other face so that the refracting

power of the lens may have a given value. If, for example

the magnitudes denoted by n, n' , R2 and F are assigned,

the curvature of the first face must be

:

F
Ri = R2 -\- ,

n —n

If the media are different on the two sides of the lens, and if

the indices of refraction of the three media in the order in

which they are traversed by the light are denoted by n\,

n<t and n3 , we find easily the following formula for the re-

fracting power of an infinitely thin lens

:

F=
J=

-
J,

=(n2-n 1)R 1+(n3-n2)R2 =Fl+F2 ,

where the symbols have precisely the same meanings as

before.

It will be seen from these examples that one effect of in-

troducing the term refracting power is a simplification in

consequence of the fact that the two magnitudes denoted

by / and /' are now expressed in terms of a single magni-

tude F.

106. Reduced Abscissa and Reduced " Vergence ".—The

reduced abscissae of a pair of conjugate axial points M, M'
are defined in exactly the same way as the reduced focal

lengths. The point designated by M is to be regarded al-

ways as lying in the first medium of the system, and, sim-

ilarly, the point designated by M' is to be regarded as lying

in the last medium, entirely irrespective of the question as
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to whether either of these points is "real" or "virtual,"

as explained in § 104.

By way of illustration, suppose that the optical system

consists of a single spherical refracting surface separating

two media ef indices n and n' . If the origin of abscissae

is taken at the vertex A, so that w= AM, w' = AM', then

the reduced abscissae will be -, — . The reciprocals of these
n' n'

magnitudes, denoted by U, U' are called the reduced "ver-

gences," with respect to the point A; thus,

U=-, U'=-,.
u u

These functions U, U' are the measures of the convergence

or divergence of the bundles of object-rays and image-rays;

and in this illustration these magnitudes are evidently pro-

portional to the curvatures of the incident and refracted

wave-fronts at the instant when the disturbance arrives

at the surface of separation of the two media.

Since (§ 79) the abscissa-formula for a spherical refracting

surface may be written in the form

:

n f_n
,
n

u~u~f'
this relation may now be expressed in the elegant and con-

venient form:

U'=U+F.
This same formula holds in the case of a spherical mirror,

in which case U f = — n/u'', where n denotes the index of re-

fraction of the medium in front of the mirror.

Moreover, the same formula U'=U-\-F is found to be

applicable to the case of an infinitely thin lens. If the lens

is surrounded by the same medium (n) on both sides, then

we must put U = n/u, U' = n/u' and F= n/f, where n' de-

notes the index of refraction of the lens-substance. Or in

case the last medium (w3) is different from the first medium

(ni), then U = ni/u, U' = ns/u', and F= n\jf. In both cases

the formula will be found to be identical in form with that
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given above. In fact, as we shall see in Chapter X, the

formula U'=U-\-F is perfectly general and applicable to

any optical instrument which is symmetrical about an axis.

The advantage of a single formula which has such wide ap-

plicability is obvious. It is easy to remember* that the re-

duced vergence (W) on the image-side of the instrument is

equal to the algebraic sum of the reduced vergence (U) on the

object-side and the refracting power (F) .

If the abscissas are measured from the focal points F, F',

that is, if we put z= FM, x /

--=F
/M r

, the magnitudes

X = -, X' =
-'

x x

are called the reduced focal point vergences; and the relation

between X, X' is expressed by the equation

:

X-X'=-F\
107. The Dioptry as Unit of Curvature.—Obviously, the

magnitudes which have been denoted above by capital

italic letters, since they are all equal or proportional to

the reciprocals of certain linear magnitudes, are essentially

measures of curvature, and hence they must be described or

expressed in terms of some unit of curvature, which will itself

be dependent on the unit of length. Opticians guided by

purely practical considerations were the first to recognize

the need of a suitable optical unit for this purpose. The

unit of curvature which is now almost universally used in

spectacle optics and which is coming to be employed more

and more in all other branches of optics is the curvature

of an arc whose radius of curvature is one meter. To this

unit the name dioptry* has been given. Originally, the

* The name "dioptrie" was first suggested by Monoyer of France

in 1872 (see Annates d'oculistique, LXV1II, 111), being derived from

the Greek tcl o\o7rrpi/<a, whence came also the term "dioptrics"

which was formerly much used by scientific writers as applying to the

phenomena of refraction, especially through lenses. The word is

generally written dioptre in French and Dioptrie in German. Etymo-
logically, the correct English form would appear to be dioptry, and

this spelling has been adopted by the American translators of both
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dioptry was defined as the refracting power of a lens in air

of focal length one meter. Consequently, a lens whose focal

length was 50 cm. or half a meter would have a refracting

power of 2 dptr., whereas another lens of focal length 2 meters

would have a refracting power of \ dptr. In general, if

the focal length of a lens surrounded by air is / centimeters,

its refracting power will be 100// dptr. But according to

the definition which we have given, the dioptry is a unit

not of refracting power only but of any similar magnitude

of the nature of a curvature. Thus, for example, if the

radius of a mirror or of a spherical refracting surface is half

a meter, its curvature is 2 dptr. If the distances denoted

by f> r, u > x ) etc., are expressed in meters, the magnitudes

denoted by the corresponding capital letters F, R, U, X,

etc., will be in dioptries. Dr. Drysdale has suggested

that we introduce also the convenient terms millidioptry

( = 0.001 dptr.), Hectodioptry ( = 100 dptr.) and Kilodioptry

( = 1000 dptr.) corresponding, respectively, to the Kilo-

meter, centimeter and millimeter as units of length. Thus,

the refracting power of a lens of focal length 10 cm. might

be variously described as equal to 100 millidioptries, to

10 dioptries, to 0.1 Hectodioptry or to 0.01 Kilodioptry.

But these terms have not come into general use.

If the focal length of a lens in water (n = 1.3) is 13 cm.,

its refracting power will be the same as that of a lens in

air (n = l) of focal length 10 cm., viz., 10 dptr. If the pri-

mary focal point of a spherical refracting surface is situated

Landolt's and Tscherning's books on physiological optics; notwith-

standing the fact that the word is usually spelled and pronounced

dioptre in England and diopter in America. Dr. Crew in his well known

text-book of physics writes dioptric. The author has concluded that

on the whole it is best to adopt the spelling used in the text.

The usual abbreviation of dioptry is a capital D.; but as this letter

is liable to be confused with the symbols of magnitude employed in the

formulae, it seems preferable to follow the usage of Von Rohr and

other modern writers on optics who have adopted the abbreviation

dptr., although doubtless many will object to this long form.
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(optically) in air (n=l) at a distance of 1 meter from the

vertex, the refracting power of the surface will be 1 dptr.

and the radius of the surface will be equal to (n
f — 1) meters,

where ,n
f denotes the index of refraction of the second me-

dium. If the radius of curvature of a mirror is 50 cm., its

reflecting power will be 4 dptr. if the reflecting surface is

in contact with air (n = l), but it will be 5^ dptr. if the

surface is in contact with water (w =-§-)• These examples

are given merely to illustrate how the term dioptry is used.

108. Lens-Gauge—The dial of the opticians' lens-gauge

described in § 99 is usually graduated so as to give in di-

optries the refracting power of the surface which is measured.

The refracting power of a spherical refracting surface is

proportional to its curvature, as we have seen (§ 105), but

it is dependent also on the indices of refraction of the two

media. If the first medium is air and if the index of re-

fraction of the second medium is denoted by n, then F =

(n—l)R. The gauge actually measures the curvature R, and

the readings on the dial correspond to the values of R mul-

tiplied by the factor (n— 1). Direct readings of the refract-

ing power (F) imply, therefore, that the maker has assumed

a certain value of the index of refraction n; and if the actual

value of n is different from this assumed value, the readings

will be erroneous. The value of n assumed by the maker is a

constant of the instrument, which should be marked on it,

although it may easily be determined empirically by com-

paring the readings with the determination of the curvature

as obtained with an ordinary spherometer.

Suppose that this constant is denoted by c, and that we

wish to use the gauge to measure the refracting power (F)

of a lens of negligible thickness made of glass of index n.

If the refracting powers of the two surfaces of the lens are

denoted by F\ and F2 and the curvatures by Rx and R2 ,

then F =Fi+F2 where Fi = (n-l)Rh F2 = — {n-l)R2} the

minus sign in front of the last expression being necessary

because the refraction in this case takes place from glass
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to air. But if the constant c has a value different from n,

the readings of the instrument for the two faces of the lens

will not give the correct values Fh F2 of the refracting powers.

Suppose the readings are denoted by Fi, F2 , so that

iY = {c-\)Ri,F2'=-{c-l)R2 . Then evidently

and hence

t\ — 7^1> ^2 7^2,
c- 1 c — 1

F=~ (Fi'+ftO.c— 1

The gauge-readings must be multiplied therefore by the

factor

n-1
c.-l

in order to obtain the correct values of the refracting powers.

Suppose, for example, that the graduations on the dial cor-

respond to a value c=1.54 and that the index of the lens

to be measured is n=1.52. Then the value of the factor

is 0.963; so that if the lens-gauge gives for the refracting

power F the value 6.25 dptr., the correct value is obtained

by multiplying this value by 0.963, that is, the correct

value will be 6.02 dptr.

109. Refraction of Paraxial Rays through a Thin Lens-

System.—Let Mi' designate the position of a point conju-

gate to an axial object-point with respect to an infinitely

thin lens of refracting power F\, and let the point where

the axis crosses the lens be designated by Ai. If the lens

is surrounded by air, and if we put Wi = AiMi, wi' = AiMi',

tfi= l/wi, tfi'= l/wi',

then

£/i'=£7i+Fi.

If now at a point A2 on the axis of the lens beyond Ai (such

that the distance d = AiA2 is measured in the direction in

which the light is going) another infinitely thin lens is set

up with its axis in the same straight line with that of the

first lens, then Mi' may be regarded as an axial object-point
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M2 with respect to the second lens; and if M2
' designates

the position of the point conjugate to M2 (or Mi') with re-

spect to this lens, then also (supposing that the second lens

is surrounded by air and that its refracting power is denoted

by F2),

U2
' = U2+F2 ,

where £72 = l/w2 , UJ= 1/1*2', w2 =A2M2 =A2M/, w'2 =A2M2
'.

Obviously, the point M2
' is the image-point conjugate to

the axial object-point Mi with respect to the two lenses;

so that regarding the system as a whole, we may write M, M'
in place of Mi, M2

' and U, U' in place of Ui, U2, respectively.

Now let us impose the condition that the two thin lenses

are in contact with each other or that they are as close together

as possible; in other words, that the axial distance d between

the lenses is negligible. If this is the case, the points Ai, A2

are to be regarded as a pair of coincident points, and hence

w=u2]

and, therefore, we may write now

:

UJ= U+FU U'=Ui'+F2.

Eliminating Ui', we obtain

:

U^U+^+Ft);
and if we put

we have finally:

U'=U+F.
Since this formula is seen to be identical in both form and

meaning with the formula for a single thin lens, it appears

therefore that a combination of two thin coaxial lenses in

contact is equivalent to a single lens of refracting power F equal

to- the algebraic sum of the refracting powers F\ and F2 of the

component lenses.

Theoretically, this rule can be applied to a centered system

of any number of thin lenses in contact. Thus, the total re-

fracting power of a thin lens-system will be

F=Fl+F2+ . . . +Fm ,

F=F 1+F2 ,
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where the total number of lenses is denoted by m. This

formula may be written

:

i=m
F= 2 Pit

where F\ denotes the refracting power of the ith. lens.

In the case of actual lenses placed together in this fashion

it will always be a question, How far are we justified in

neglecting the total thickness of the system? Two adjacent

lenses may be placed in actual contact, but a third lens can-

not be in contact with the first. Moreover, even when

there are only two lenses, their outward forms may be such

that it will not be possible to place them in tangential con-

tact at their vertices, although they can always be made
to touch at two points symmetrically situated with respect

to their common axis. Attention is directed to this ques-

tion chiefly in connection with the method of neutraliza-

tion of lenses which is practiced extensively in the fitting

of spectacle glasses. Two infinitely thin lenses of equal and

opposite refracting powers are said to "neutralize" each

other, because when they are placed in contact their total

refracting power (F1+F2) is equal to zero. Strictly speak-

ing, the neutralization of a negative glass by a positive glass

implies not only that the focal lengths are equal in magni-

tude but also that the primary focal point of one lens shall

coincide with the secondary focal point of the other. Both

of these conditions are realized in a combination of a plano-

concave with a plano-convex lens fitted together so as to form

a slab with plane parallel sides. But even with the relatively

thin lenses employed in spectacles sensible errors may be

introduced by assuming, as is usually done, that the con-

dition Fi+F2 = is the -sole or even the main consideration

for neutralization.

110. Prismatic Power of a Thin Lens.—Only such rays

as go through the optical center (§ 88) emerge from a lens

without being deviated from their original directions. The

prismatic power of a thin lens, which, like the power of a
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Fig. 141, a and b.—Prismatic power of infinitely thin lens, (a) Convex,
(b) Concave lens.

thin prism (§ 70), is measured by the deviation of a ray in

passing through it, depends not only on the refracting power
of the lens but also on the place where the ray enters the

lens. In the accompanying diagram (Fig. 141, a and b)
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the point A designates the axial point of a thin lens of re-

fracting power F. A ray RB incident on the lens at B passes

out in the direction BS. If M, M' designate the points

where the incident and emergent rays cross the axis, then

ZM'BM= e is the angle of deviation; and if = ZAMB de-

notes the slope of the incident ray and 0' = Z AM'B denotes

the slope of the emergent ray, evidently we have the rela-

tion:

e= 0- $'.

The distance /i =AB of the incidence-point B from the axis

of the lens or the incidence-height of the ray is called by

the spectacle-makers the decentration of the lens. Since

the decentration of an ophthalmic lens is always compara-

tively small, the ray RB may be regarded as a paraxial

ray, and hence we can put 6 and 6' in place of tan0 and

tan#' and write:

6=--=-h.U, $'=-- = -h.U',
u u

where u =AM, m' = AM', U=l/u, U' = 1/u', since the lens

is supposed to be surrounded by air (n=l). Accordingly,

e = h(U'-U),
the deviation-angle e being expressed in radians if h, u and

v! are all expressed in terms of the same linear unit. But

U'-U=F;
and hence

e = h.F radians.

In this formula the decentration h must be expressed in

meters if the refracting power F is given in dioptries. The

above relation may be derived immediately also from

Fig. 142, where the incident ray RB is drawn parallel to

the axis of the lens, so that in this case 6' + e = 0; and

since tan 6' = 6' = =rr-r= -tt,
=— t = — h.F. we obtain, as above,

F'A /' /

e — h.F. If a screen is placed perpendicular to the incident

light coming in the direction RB, a spot of light will be pro-

duced on the screen at the point N where the straight line
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RB meets the screen; and if now a lens is interposed at a

certain known distance from the screen, the deviation e can

easily be determined by measuring the distance NL through

which the spot of light is deflected.

However, both the radian and the meter are inconven-

iently large units for expressing the values of the small mag-

£

Fig. 142.—Prismatic power of infinitely thin lens; incident ray parallel

to axis.

nitudes denoted by e and h. Opticians measure the devia-

tion in terms of the centrad or in terms of the prism-dioptry,

which in the case of small angles, as we have seen (§ 70),

is practically the same unit as the centrad. If the angle

of deviation expressed in centrads or prism-dioptries is de-

noted by p, while e denotes the value of this angle in ra-

dians, then

p = 100 €.

Moreover, if the decentration h is given in centimeters in-

stead of in meters, we obtain the following formula:

p = h.F;

that is, the deviation (p) in prism-dioptries (or centrads) pro-

duced by a thin lens in any zone is equal to the product of the

refracting power (F) of the lens in dioptries by the radius (h)

of the zone in centimeters; or as the opticians usually express

it, the prismatic power of a thin lens in prism-dioptries is
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equal to the product of the refracting power of the lens in

dioptries by the decentration in centimeters. For example,

a spectacle glass of refracting power 5 dptr. must be de-

centered about 0.4 cm. or 4 mm. in order to have a pris-

matic power of 2 prism-dptr.

If in Fig. 142 the distance AP of the screen from the lens

is 1 meter, the deflection LN in centimeters of the spot of

light will be equal to the prismatic power of a lens of focal

length /= AF' decentered by the amount /i = AB.

PROBLEMS

1. How is the curvature of a wave affected by reflection

at a plane mirror? How is the curvature of a plane wave

affected by reflection at a spherical mirror?

2. The distance between a luminous point and the eye

of an observer is 50 cm. A plate of glass (n=1.5), 10 cm.

thick, is interposed midway between the point and the eye

with its two parallel faces perpendicular to the line of vision.

Spherical waves spreading out from the luminous point

are refracted through the plate and into the eye. Find the

curvature of the wave-front: (a) just before it enters the

glass, (6) immediately after entering the glass, (c) im-

mediately after leaving the glass, and (d) when it reaches

the eye.

Ans. (a) -5 dptr.; (6) — 3| dptr.; (c)-3| dptr.; (d)

-2| dptr.

3. What is the refracting power of a spherical refracting

surface of radius 20 cm. separating air (n= l) from glass

(n' = 1.5)?

Ans. +2.5 dptr. or —2.5 dptr., according as the surface

is convex or concave, respectively.

4. If the cornea of the eye is regarded as a single spheri-

cal refracting surface of radius 7.7 mm. separating air (n=l)

from the aqueous humor (n' = 1.336), what is its refracting

power? Ans. 43.6 dptr.
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5. Using the data of the preceding problem, find the re-

fracting power of the cornea when the eye is under water

(n = 1.33). Ans. Nearly 0.78 dptr.

6. What is the reflecting power of a concave mirror of

radius 20 cm. when the reflecting surface is in contact with

(a) air (n=l) and (6) water (n=-J)?

Ans. (a) 10 dptr.; (b) 13.33 dptr.

7. A convex spherical surface of radius 25 cm. separates

air (n=l) from glass (V = 1.5). Find the refracting power

and the reflecting power of the surface.

Ans. Refracting power is +2 dptr.; reflecting power is

- 8 dptr.

8. The reflecting power of a spherical mirror in contact

with air is +2 dptr. Determine the form of the mirror.

Ans. A concave mirror of radius 1 meter.

9. A spherical mirror is in contact with a liquid of re-

fractive index n. If the reflecting power of the mirror is

+2 dptr., show that the mirror is a concave mirror of radius

n meters.

10. The index of refraction of carbon bisulphide is 1.629.

What is the reflecting power of a concave mirror of radius

25 cm. in contact with this liquid? Ans. +13.032 dptr.

11. What is the refracting power of a thin symmetric

convex lens made of glass of index 1.5, if the radius of cur-

vature of each surface is 5 cm.? Ans. +20 dptr.

12. The refracting power of a thin plano-convex lens

made of glass of index 1.5 is 20 dptr. Find the radius of

the curved surface. Ans. 2.5 cm. or nearly 1 inch.

13. A thin convex meniscus lens is made of glass of in-

dex 1.5. The radius of the first surface is 10 and that of the

second surface is 25 cm. Assuming that the lens is sur-

rounded by air (n= 1), find its refracting power.

Ans. +3 dptr.

14. If the lens in the preceding example were made of

water of index ~, what will be its refracting power?

Ans. +2 dptr.
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15. If the first surface of the lens in No. 13 were in con-

tact with water (fti = |) and the second surface in contact

with air (n3 = 1), what will be the refracting power?

Ans. — §- dptr.

16. If the first surface of the lens in No. 13 were in con-

tact with air (fti=l) and the second surface in contact with

water (n3= 4), what will be the refracting power?

Ans. +4^ dptr.

17. In examples 13, 14, 15 and 16 suppose the lens were

reversed so that the opposite face was turned to the inci-

dent light. What would be the answers to these problems

then?

Ans. The same answers would be obtained for Nos. 13

and 14; but the answers for Nos. 15 and 16 would be inter-

changed.

18. Show that the lateral magnification in a spherical

mirror, a spherical refracting surface or an infinitely thin lens

is equal to the ratio of the reduced " vergences " U and U'.

19. Describe the spherometer and the lens-gauge and

explain their principles.

20. Show how a plane wave is refracted through a thin

lens, and derive from a diagram for this case the formula

for the refracting power.

21. Show how a plane wave is refracted through a thin

prism, and derive the formula for the deviation in terms of

the refracting angle of the prism and the relative index of

refraction.

22. The refracting power of a thin lens is +6 dptr. It

is made of glass of index 1.5 and surrounded by air (w=l).

If the radius of the first surface is +10 cm., what is the

radius of the second surface? Ans. r2 = — 50 cm.

23. A convex lens produces on a screen 14.4 cm. from

the lens an image which is three times as large as the object.

Find the refracting power of the lens. Ans. 27.78 dptr.

24. A lens-gauge graduated in dioptries for glass of in-

dex 1.5 is used to measure a thin double convex lens made
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of glass of index 1.6. The readings on the dial give +4 for

both surfaces. Find the refracting power of the lens, assum-

ing that its thickness is negligible. Ans. +9.6 dptr.

25. Modern spectacle glasses are meniscus lenses with

the concave surface worn next the eye. If the glass is to

give the proper correction, it is very important for it to be

adjusted at a certain measured distance from the eye. In

determining this distance it is necessary to ascertain the

" vertex depth" of the concave surface, that is, the perpen-

dicular distance (t) of the vertex from the plane of the edge

or contour of the surface. If the diameter of this contour

expressed in millimeters is denoted by 2h, and if the refract-

ing power of the surface next the eye, expressed in dioptries,

is denoted by F2 , and, finally, if the index of refraction of

the glass is denoted by n, show that the vertex depth of the

surface is approximately:

t= _ 0.0005 -^4 millimeters.
n—1

26. What is the refracting power of a lem which is equiva-

lent to two thin convex lenses of focal lengths 15 and 30 cm.,

placed in contact? Ans. 10 dptr.

27. A concave lens of focal length 12 cm. is placed in

contact with a convex lens of focal length 7.5 cm. Find

the refracting power of the combination. Ans. 5 dptr.

28. The refracting power of a thin concave lens is 5 times

that of a thin convex lens in contact with it. If the focal

length of the combination is 8 cm., find the refracting power

of each of the components. Ans. — 15 § and +3 § dptr.

29. Two thin lenses, made of glass of indices 1.5 and 1.6,

are fitted together with the second surface of the first lens

coincident with the first surface of the second lens (rz= r2).

The radii of the surfaces are all positive and equal to 4, 11

and 6 cm. taken in the order named. Find the refracting

power of the combination. Ans. 12.5 dptr.

30. What is the prismatic effect of a lens of power +4 dptr.

decentered 0.75 cm.? Ans. 3 prism-dioptries.
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31. Two thin convex lenses have each a focal length of

1 inch. Find the position of the second focal point of the

combination of these two lenses when they are placed with

their axes in the same straight line: (a) when they are in

contact, (b) when they are separated by 1.5 inches, and

(c) when they are separated by 3 inches. Draw a diagram

for each case showing the path of a beam of light coming

from a distant axial object-point.

Ans. (a) Half an inch beyond the combination; (b) be-

tween the lenses and 1 inch from second lens; (c) 2 inches

beyond second lens.

32. A convex lens of focal length 20 cm. and a concave

lens of focal length 5 cm. are placed 16 cm. apart. Find the

positions of the focal points of the combination.

Ans. One of the focal points is 420 cm. from the convex

lens and 436 cm. from the concave lens; and the other focal

point is 36 cm. from the convex lens and 20 cm. from the

concave lens.

33. How much must a lens of 5 dptr. be decentered in

order to produce a deviation of 3° 307 Ans. 1.22 cm.

34. The radius of a spherical surface is measured by a

spherometer and found to be 14.857 cm. Measured by a

lens-gauge the reading is 3.5 dptr. What is the index of re-

fraction of the glass for which the readings on the dial of the

gauge have been calculated? Ans. 1.52.

35. The radii of each surface of a thin symmetric double

convex glass lens is 6 inches. The lens is supported with

its lower face in contact with the horizontal surface of still

water. Assuming that the sun is in the zenith vertically

above the lens, and that its apparent diameter is 30', find

the position and size of the sun's image. (Take the indices

of refraction of air, glass and water equal to 1, f and f,

respectively.)

Ans. A real image 12 inches below the surface of the water,

0.0785 inch in diameter.



CHAPTER IX

ASTIGMATIC LENSES

111. Curvature and Refracting Power of a Normal Sec-

tion of a Curved Refracting Surface.—The refracting power

(F) of a spherical surface is proportional to the curvature

(R) of the surface, that is, F=(?i'—ri)R, where n and n'

denote the indices of refraction of the media on opposite

sides of the surface (§ 105). A spherical surface has the

same curvature in every meridian, and hence also its re-

fracting power is uniform, so that the refracted rays in

one meridian plane are brought to the same focus as those

in another meridian plane. But the surfaces of a lens are

not always spherical (§ 87), and therefore, in order to ascer-

tain what happens when a narrow bundle of rays is inci-

dent perpendicularly on a curved reflecting or refracting

surface of any form, we must investigate the reflecting or

refracting power in different sections of the surface; and

this means that we must investigate the curvature of these

sections. In general, this is a problem of some difficulty

and involves a more or less extensive knowledge of the

theory of curved surfaces and the methods of infinitesimal

geometry. No attempt can be made to explain this theory

here, but for the student who is not already familiar with

it, certain general definitions and propositions of geometry

which have a direct bearing on the optical problems to be

treated in this chapter will be stated as succinctly as pos-

sible.

The normal to a curved surface at any point is a straight

line drawn perpendicular to the tangent plane at that point.

The curved line which is traced on the surface by a plane

containing the normal at a point A of the surface is called

300
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a normal section through this point. The normal sections

of a sphere, like the meridians of longitude of the earth (as-

sumed to be a perfect sphere), are all great circles of the

sphere, and their curvatures are equal. But, generally,

Fig. 143.—Normal sections of curved surface: xAy and xAz planes of

principal sections; xAP plane of oblique normal section.

the curvatures of the normal sections through a point on

a curved surface will vary from one section to the next; so

that if we imagine a plane containing the normal to be turned

around this line as axis, we shall find that for one special

azimuth of this revolving plane the curved line which it

carves out on the surface will have the greatest curvature,

and that then as the plane continues to revolve the curva-

ture of the section decreases and reaches its least value for

an azimuth which is exactly 90° from that for which the

curvature was greatest. Thus, for example, in a cylindri-

cal surface the curvature at any point is least and equal to

zero in a normal section whose plane is parallel to the axis

of the cylinder, and it is greatest in a normal section made
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by a plane perpendicular to the axis. At each point A of a

curved surface the normal sections of greatest and least curva-

tures lie always in two perpendicular planes, which are called

the planes of the principal sections of the surface at A. The
lines of intersection of these planes with each other and

with the tangent plane at A may be chosen as the axes

of reference of a system of rectangular coordinates x, y, z

whose x-axis is the normal Ax (Fig. 143). The centers of

curvature of the principal sections made by the xy-plsme

and the £2-plane will be designated by Cy and Cz , respec-

tively; and the curvatures of the principal sections will be

denoted by Ry and Rz , so that if ry =ACy and rz =ACz

denote the principal radii of curvature of the surface at

the point A, we must have here (§ 99) Ry
= l/ry and R2

Now there is a remarkable geometrical relation between

the curvature of any normal section at A and the curvatures

of the principal sections of the surface at this point which

will be stated also without giving the proof. Let a plane

containing the normal Ax intersect the tangent plane (or

2/2-plane) in the straight line AP (Fig. 143) and put ZyAP
= 0. The center of curvature of the normal section made
by this plane lies also on the normal Ax at a point which

may be designated as Gg, so that the radius of curvature

is ACo= re, and the curvature itself is He=lfro. The con-

nection between Re and the principal curvatures Ry and

Rz is expressed by the following formula:

Re =Ry.cos
2 d+Rz.sm

2
0,

where denotes the angle which the normal section makes
with the xy-pl&ne.

In a normal section at right angles to the first we should

have, therefore,

Re+w =Ry.cos
2
( 0+9O°)+#z .sin

2
( (9+90°),

or, since cos( (9+90°) = - sin 0, sin( 0+90°) =cos 0,

#0+9O°= -Ry.sin
2 0+#zcos

2
0.
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Adding the curvatures Re and Rd+<d0°, we obtain the rela-

tion:

Rd+Re+9o°=Ry+Rz ;

that is, the algebraic sum of the curvatures of any two normal

sections intersecting each other at right angles at a point on

a curved surface has a constant value, which is equal to the

algebraic sum of the principal curvatures at this point.

These theorems concerning the curvatures of the normal

sections at a point of a curved surface are due to the great

mathematician Euler (1707-1783), who made notable con-

tributions also to the theory of optics.

Since, therefore, the curvature of a surface at the point A
varies from one azimuth to another as has just been ex-

plained, the power of a refracting surface will vary in

exactly the same way. Accordingly, the principal sections

for which the curvature of a refracting surface has its great-

est and least values (Ry , Rz) are also the sections at this

place of greatest and least refracting powers (Fy,Fz), because

Fy = (n'-n)Ry , Fy =(n'-ri)Rz .

The refracting power at this place in an oblique normal

section which is inclined to the xy-plsaie at an angle 6 will be

:

Fd={n f~n)Re;
and the relation between Fe and Fy , Fz is given by the

formula:

F0 =Fy.cos
2 0+Fz.sin

2
0;

and moreover:

Fe+Fe+90o=Fy+Fz;

that is, the algebraic sum of the refracting powers in any two

normal sections through a point on a curved refracting sur-

face is constant and equal to the algebraic sum of the princi-

pal refracting powers.

For example, in Fig. 144, let A designate a point of a

curved refracting surface, and let the normal at this point

be represented by the straight line Ax, which in accordance

with the preceding discussion is to be taken as the z-axis

of a system of rectangular coordinates with its origin at A.
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The y-Sixis is represented by a straight line drawn in the

plane of the paper perpendicular to Ax. The plane of the

paper represents the plane of one of the principal sections,

whereas the £2-plane at right angles to this plane represents

Fig. 144.—Chief ray of narrow bundle of rays normal to curved re-

fracting surface: Principal sections xAy, xkz; tangent plane ykz.

the plane of the other principal section. The tangent-plane

at A is represented by the 2/2-plane perpendicular to the

normal. Consider now a narrow bundle of rays which pro-

ceeding from a point M on the normal are incident on the

curved refracting surface at points which are all very close

to A. This point M may be designated also by My or by

Mz according as it is regarded as lying in the one or the other

of the two principal sections; or it may be designated also

by Me if it is to be considered as lying in an oblique normal

section which is inclined to the ^-plane at an angle 6. The

chief ray of the bundle is the ray which coincides with the

normal to the surface at A and which proceeds therefore

into the second medium without being deviated. A plane

containing this chief ray will cut out from the bundle a pen-

cil of rays which will be refracted at points of the surface

which lie in a normal section. The pencil of rays proceed-

ing from My in the xy-pleme will be refracted to a point My
',

while the pencil of rays proceeding from Mz will be refracted

to a point Mz
'; and, in general, these points My

' and M/ will

be two different points on the normal Ax. Now if Uyt Uy
'

denote the reduced "vergences" (§ 106) of the pair of conju-
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gate points My , My
' in one principal section; and, similarly,

if Uz , Uz denote the reduced '' vergences" of the pair of con-

jugate points Mz , Mz
' in the other principal section, evi-

dently we shall have the following relations:

Uy'=Uy+Fy ,
UZ'=UZ+FZ .

Similarly, also, a pencil of rays proceeding from Me and

meeting the refracting surface at points in an oblique nor-

mal section will be refracted to a point M0' which will lie

on Ax between M/ and M/, so that

U0'=Ue+Fe.
If the bundle of incident rays is homocentric, that is, if

the points designated by My , Mz and M0 are all coincident,

then Uy=Uz =Ud=U. The peculiarity of the imagery

consists in the fact that instead of obtaining a single image-

point M' corresponding to an object-point M, as in the case

of a spherical refracting surface, we find here a whole se-

ries of such points lying on the segment My'Mz
' of the nor-

mal Ax. This will be explained more fully in § 113.

112. Surfaces of Revolution. Cylindrical and Toric

Surfaces.—The curved reflecting and refracting surfaces

of optical mirrors and lenses are almost without exception

surfaces of revolution, that is, surfaces generated by the revo-

lution of the arc of a plane curve around an axis in its plane.

Accordingly, it is desirable to call attention to some of the

special properties of these surfaces. The curve traced on

a surface of revolution by a plane containing the axis of

revolution is called a meridian section. The normals to the

generating curve are also normals to the surface; and since

the normal at any point of the surface lies in the meridian

section which passes through that point, it follows that the

normals to a surface of revolution all intersect the axis of

revolution.

The two principal sections at any point of a surface of

revolution are the meridian section which passes through

that point and the normal section which is perpendicular

to the meridian section. The center of curvature of the



306 Mirrors, Prisms and Lenses 112

latter principal section lies on the axis of revolution at the

point where the normal crosses it.

Not only are the surfaces of mirrors and lenses generally

surfaces of revolution, but usually they are very simple types

of such surfaces. A spher-

ical surface may be consid-

ered as generated by the.

revolution of a circle
around one of its diame-

ters. The other chief

forms of reflecting and re-

fracting surfaces are cyl-

indrical and toric surfaces,

which are also compara-

tively easy to grind.

A cylindrical surface of

revolution is generated by

the revolution of a straight

line about a parallel straight

line as axis, called the axis

of the cylinder. A meridian

section of a cylinder at a

point A on the surface

(Fig. 145) will be a straight

line of zero curvature,

whereas the other principal

section at right angles to
Fig 145 -Refracting power of cylin-

th axig f th cylinder ^U
drical surface: Principal sections °

made by planes Ay and Kz; oblique be the arc of a Circle

section AP. whose curvature is R = l/r,

where r denotes the radius of the cylinder. If the i/-axis

is drawn parallel to the cylinder-axis, then Ry = 0, RZ = R;

and hence according to Euler's formula given in §111,

the curvature in an oblique normal section AP inclined to

the axis of the cylinder at an angle 6 will be

Re=R.sm2
6.
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This result may be obtained also independently by observ-

ing that although the arcs Az and AP in Fig. 145 have the

same sagitta (§ 99), their chords denoted by 2h and 2he are

unequal in length, because h = hd.smd. Now the curva-

tures of two arcs having the same sagitta are inversely pro-

portional to the squares of their chords; consequently,

R he*'

and hence

Re= R.sin2
d,

exactly as above. Moreover, in a normal section perpen-

Fig. 146.—Principal sections of toric surface.

dicular to the section AP, we find, by writing (0+90°) in

place of 6,

R0+CjQ°= R.cos2
6;

and therefore

Re-\-Re+V0o =R'
Accordingly, in the case of a cylindrical refracting sur-

face, if the maximum refracting power is denoted by F>

the refracting power in an oblique section inclined to the
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axis at an angle 6 will be F.sin 2
6, and in a section at right

angles to this F.cos2
6. The refracting power F of a cylin-

drical refracting surface may, therefore, be considered as

in a certain sense capable of resolution into a refracting

power F.sin 2 6 in one oblique section and a refracting power

Fig. 147, a and b.—Toric surfaces (reproduced from Prentice's Ophthalmic Lenses

and Prisms by permission of the author)

.

F.cos2 6 in a section at right angles to the first; and since

F0+Fd+9O°=F,
we can say that the algebraic sum of the refracting powers in

any two mutually perpendicular sections of a cylindrical re-

fracting surface is constant and equal to the maximum refract-

ing power.

A toric or toroidal surface (so-called from the architect-

ural term torus applied to the molding at the base of an

Ionic column) is a surface shaped like an anchor-ring which
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is generated by the revolution of a conic section around an

axis which lies in the plane of the generating curve but does

not pass through its center. The surface of an automobile

tyre is a toric surface, being generated by the revolution

of the circular cross-section of the tyre around an axis per-

Fig. 148, a and b.—Principal sections of toric lenses (reproduced from
Prentice's Ophthalmic Lenses and Prisms by permission of the author).

pendicular to the plane of the wheel at its center. Toric

refracting surfaces are generated always by the revolution

of the arc of a circle (Fig. 146). The arcs of the two prin-

cipal sections of a toric surface of a lens bisect each other

at the vertex A of the surface, so that the normal Ax is an

axis of symmetry. If the axis of revolution is parallel to

the 2/-axis of the system of rectangular coordinates, the

center of the meridian section through A is at the center

Cy of the generating circle, whereas the center of the other

principal section at A is at the point of intersection Cz of

the normal Ax with the axis of revolution.

The diagrams, Fig. 147, a and b (which are copied from
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the beautiful drawings of Mr. Prentice in his valuable

and original essay on " Ophthalmic Lenses and Prisms' ' in

the American Encyclopaedia of Opthhalmology) show the two
principal forms of toric surfaces. The principal sections of

some types of toric lenses are indicated in Fig. 148, a and b.

A cylindrical surface of revolution may be considered as

a special form of toric surface by regarding the segment of

the generating straight line as the arc of a circle with an

infinite radius.

113. Refraction of a Narrow Bundle of Rays incident

Normally on a Cylindrical Refracting Surface. Sturm's

Conoid.—In order to obtain a clear idea of the character

of a bundle of rays refracted at a cylindrical surface or

through a thin cylindrical lens, suppose, by way of illustra-

Fig. 149.—Chief ray of narrow bundle meets cylindrical refracting surface

normally; astigmatic bundle of refracted rays. Principal sections xAy
and xAz.

tion, that we consider a special case of the problem which we
had in § 111 in connection with Fig. 144, namely, the case in

which a narrow homocentric bundle of incident rays, origi-

nally converging towards a point M, is intercepted before it

reaches this point by being received on a cylindrical refract-

ing surface which is placed so that the chief ray of the bundle

meets the surface normally at a point A and proceeds, there-

fore, along the normal Ax (Fig. 149) without being deflected.
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For convenience of delineation, the cylindrical surface is

represented in the figure as the first surface of an infinitely

thin piano-cylindrical lens, but the explanation is not es-

sentially affected by the fact that it applies to a bundle of

rays which have undergone also a second refraction at the

plane face of the lens. The bundle of incident rays is not

represented in the figure. The point where the chief ray

meets the lens is designated by A. In the drawing this point

A is marked on the second or plane face of the lens, but since

the lens is supposed to be infinitely thin, this point may be

regarded also as lying on the first face. The plane of the

paper represents the meridian section of the cylindrical sur-

face through the vertex A, and hence the axis of the cylinder

is in this plane and parallel to the straight line Ay perpendic-

ular to Ax in the meridian or xy-pl&ne. This meridian plane

is one of the principal sections at the vertex A of the cylin-

drical surface; whereas the other principal section is the

zz-plane at right angles to the plane of the paper. The

bundle of rays is cut by these principal sections in a pencil

of meridian rays lying in the meridian xy-pl&ne and a pencil

of sagittal rays (named by analogy with the so-called " sagittal

suture" in anatomy) lying in the xz-pl&ne; the chief ray of

the bundle being common to both of these pencils, since it

is the line of intersection of the two principal sections of the

bundle. Now the meridian rays traversing the infinitely

thin cylindrical lens in a section containing the axis of the

cylinder will be entirely unaffected in transit and will pro-

ceed therefore to the point M just as though the thin piece

of glass had not been interposed in the way; so that this

point regarded now as the point of rendezvous, so to speak,

of the meridian rays after they have passed through the

lens may also be designated by My
', as in fact it is marked

in the diagram. On the other hand, the rays of the sagittal

pencil meet the surface in points lying on the arc of the sec-

tion made by the zz-plane, and the rays in this plane are

refracted just as they would be through a piano-spherical
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lens of the same curvature as that of the cylinder; and ac-

cordingly after passing through the lens they will be brought

to a focus at a point Mz
' on the chief ray Ax, which in the

case here supposed will be between the lens and the point

My
', as represented in the figure.

The bundle of rays after refraction is no longer homocentric,

so that an object-point is not reproduced in a cylindrical

lens by a single image-point or even by a pair of image-points,

since only the meridian and sagittal image-rays intersect

in the so-called image-points My
' and M/, respectively.

Under such circumstances, the bundle of image-rays is said

to be astigmatic (or without focus), which, in fact, is the

general character of a bundle of optical rays, as will be

further explained in Chapter XV.
Rays which are incident on the cylindrical surface in an

oblique section made by a plane containing the normal Ax
will be brought to a focus at a point lying between My

' and

Mz
', as explained in § 111. But the two points My

' and Mz
'

have a superior right to be regarded as the image-points of

the astigmatic bundle of rays, not only because they are

the image-points of the two principal pencils of the bundle,

but also because the so-called image-lines of the astigmatic

bundle of rays are located at these places, as we shall pro-

ceed to show.

Imagine a straight line drawn on the surface of the cylin-

der parallel to the i/-axis and at a short distance from the

zy-plane, and consider the pencil of rays which meet the

surface in points lying along this line; these rays after pass-

ing through the lens will meet in a point in the zz-plane a

little to one side of the image-point My
'; and the assemblage

of these image-points will form a very short image-line per-

pendicular to the meridian section of the bundle of rays at

the point M/; just as though the pencil of meridian rays

had been rotated through a very small angle around an

axis parallel to the y-a,xis and passing through Mz
.' And,

similarly, if the pencil of sagittal rays is rotated slightly
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on both sides of the zz-plane around an axis parallel to the

2-axis and passing through the image-point M/, the image-

point Mz
' will trace out a little image-line perpendicular to

the sagittal section of the astigmatic bundle of rays. Thus,

instead of a point-like image of a point-like object or point-

to-point correspondence between object and image, that is,

instead of the so-called punctual imagery which we have

when paraxial rays are reflected or refracted at a spherical

surface, we obtain here something essentially different; for

in this case each point of the object is reproduced by two

A
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optical rays. If the lens-opening is determined by a small

circular stop in a plane at right angles to the optical axis

(or rr-axis) and with its center on this axis, the transverse

sections of the astigmatic bundle of refracted rays made by
planes perpendicular to the chief ray (that is, parallel to

the 2/2-plane) will be ellipses with their major axes parallel

to the i/-axis in one part of the bundle and parallel to the

2-axis in the other part. These elliptical sections become
narrower and narrower as they approach either of the image-

lines, at both of which places the elliptical section collapses

into the major-axis of the ellipse. At some intermediate

point between the two image-lines the section of the bundle

will be a circle (the so-called " circle of least confusion").

114. Thin Cylindrical and Toric Lenses.—Optical lenses

may now be classified in two principal groups, namely,

anastigmatic (or simply stigmatic) lenses and astigmatic lenses,

according as the imagery produced by the refraction of par-

es, Concave.

b, Convex.
Fig. 151, a and b.—Piano-cylindrical lenses.

axial rays through the lens is punctual imagery or not (§ 113).

Anastigmatic lenses are single focus lenses, whereas astig-

matic lenses may be said to be double focus lenses. The

essential requirement is that the optical axis of the lens,
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which is generally an axis of symmetry, shall meet both

faces normally (§ 87) ; and another condition that must
always be fulfilled in an actual lens is that the planes of the

principal sections at the vertex of the first surface shall also

be the planes of the principal sections at the vertex of the

second surface. Astigmatic lenses are generally cylindrical

or toric.

Cylindrical lenses are made in three forms, namely, piano-

cylindrical (one surface cylindrical and the other plane,

Fig. 152.—Sphero-cylindrical lens.

Fig. 153.—Sphero-cylindrical lens.

Fig. 151, a and 6), cross-cylindrical (both surfaces cylindrical,

the axes of the cylinders being at right angles), and sphero-

cylindrical (one surface cylindrical and the other spherical,

Figs. 152 and 153). All of these forms are quite common in

modern spectacle glasses, but prior to 1860 cylindrical lenses

were hardly employed at all. The first scientific use of a

cylindrical lens seems to have been made by Fresnel

(1788-1827) in 1819 for the purpose of obtaining a luminous

line. In 1825 Sir George Airy (1801-1892), afterwards the

distinguished astronomer-royal at Greenwich, employed a con-
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cave sphero-cylindrical glass to correct the myopic astigma-

tism of one of his eyes. But it was not until Donders
(1818-1889) published his treatise on astigmatism and cyl-

indrical glasses in 1862 that their importance began to be

recognized by ophthalmologists all over the world.

In a toric lens usually only one of the surfaces is toric

(§ 112), while the other is plane or spherical. The diagrams,

Fig. 147, a and b, and Fig. 148 show the principal types of

toric lenses.

Let Fy
t
i, Fy

t

2 and FZi i, FZy 2, denote the refracting powers

of the two surfaces of an astigmatic lens in the xy-plsaie and

zz-plane, respectively, which are the planes of the principal

sections of the thin lens with respect to its optical center A.

Now the total refracting power (F) of a thin lens was found

(§ 105) to be equal to the algebraic sum (F1+F2) of the

powers of the two surfaces of the lens; so that applying this

formula to an astigmatic lens, we obtain for the refracting

power in the two principal sections

:

Fy =Fy<i-\-Fy t
2, Fz =FZt

\-\-Fz^
In each of the following special cases the lens is supposed

to be surrounded by the same medium (n) on both sides,

while the index of refraction of the lens itself is denoted by n'.

(1) Consider, first, the case of a piano-cylindrical lens,

which in a principal section containing the axis of the cylin-

der acts, as was remarked (§ 113), like a slab of the same

material with plane parallel faces; whereas in the other prin-

cipal section the effect is the same as that of a piano-spherical

lens of the same radius (r) as that of the cylinder. If the

axis of the cylinder is parallel to the y-axis, and if the plane

surface is supposed to be the second surface, we shall have

in this case

:

Fy ,i =Fy< 2
=Fz< 2 = 0,

and, consequently:

Fy
= 0, Fz

= FZtl = F=(n'-n)R,
where F denotes the maximum refracting power of the cylin-

drical surface, and R = l/r denotes its curvature.
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If M designates the position of an object-point lying on

the optical axis (z-axis) of a thin piano-cylindrical lens, and

if M#' designates the position of the corresponding image-

point produced by the refraction through the lens of the

rays which lie in the plane of a normal section inclined at

an angle 6 to the axis of the cylinder; and if we put

AM = u, AMe' = u', U = n/u, Ud' = n/ue
',

then

Ue'= U+Fe, where Fe = F.sin2
6;

and for the two principal sections:

Uy'=U, UZ'=U+F.
(2) In a cross-cylindrical lens the axes of y and z are par-

allel to the axes of the cylinders. Assuming that the cylin-

drical axis of the first surface of the lens is parallel to the

2/-axis, we have for a thin lens of this form

:

Fy =Fy , 2 =-(nf-n)R2 , Fz =FZil =(n''-n)Rh
F=(n'-n)(R 1.sm

2 d -ft.cos8
0);

where R\, R2 denote the maximum curvatures of the cylin-

ders and Fe denotes the refracting power in a section in-

clined at an angle 6 to the axis of the first surface.

(3) In a thin sphero-cylindrical lens, if we suppose, for

example, that the axis of the cylindrical surface is parallel

to the ?/-axis and that this surface is also the first surface

of the lens, then

Fy ,i = 0, Fy , 2 =Fz , 2
=F2 ,

Fy = Fy , 2 =-(n f-n)R2 ,

Fz = Fz , 1+Fy = (n
f -n)(R l-R2),

Fe=(n'-n)(R 1.sm
2 d-R2);

where R\, R2 denote the maximum curvatures of the cylin-

drical and spherical faces, respectively, and Fe denotes the

refracting power of the combination in a plane inclined at

an angle 6 to the axis of the cylinder.

(4) Consider, finally, a thin toric lens, whose second face

may be supposed to be spherical, so that if r2 denotes

the radius of this surface, its refracting power will be
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'Ft— — {n'— n)R2} where R2 = lfr2 . Then if Ryyh Rz ,i denote

the principal curvatures of the toric surface, the refracting

powers of the lens will be

Fy =(n'-n) (Ry , 1-R2) )
Fz = {n'-n) (Rz,i-Rt),

Fe= (n'-n) (#y,i.cos
2 d-\-Rz ,i.sin

2 0-R2).

115. Transposing of Cylindrical Lenses.—The orientation

of a cylindrical refracting surface is described by assigning

the value of the angle <p which the axis of the cylinder makes

with a fixed line of reference. In a cylindrical spectacle

glass this line of reference is a horizontal line usually imag-

ined as drawn from a point opposite the center of the pa-

tient's eye either towards his temple or towards his nose;

18CT x \

y 1

0' isoj

TEMPLE NOSE NOSE TEM.P.LE

Fig. 154.—Mode of reckoning axis of cylindrical eye-glass.

and the angle through which this line has to be rotated in

a vertical plane in order for it to be parallel to the axis of

the cylinder is the angle denoted by <p. In England and

America it is customary to imagine the horizontal line of

reference as drawn from the center of the glass towards that

temple of the patient which is on the right-hand side of an ob-

server supposed to be adjusting the glass on the patient's

eye; so that for a glass in front of either eye the radius vector

is supposed to rotate in a counter-clockwise sense from 0°

to 180°, as represented in Fig. 154. A different plan was

recommended by the international ophthalmological con-

gress which met in Naples in 1909, whereby the angle cp was

to be reckoned from an initial position of the radius vector

drawn horizontally from a point opposite the center of the

eye towards the nose. According to this plan, the sense of
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rotation will be clockwise for one eye and counter-clockwise

for the other eye, as represented in Fig. 155.

A sphero-cylindrical glass is described in an ophthalmo-

logical prescription by giving the refracting power P of

the cylindrical component and the refracting power Q of

the spherical component, together with the slope <p of the

axis of the cylinder, in a formula which is usually written

as follows:

Q sph. 3 P cyl., slx.<p,

where the symbol O means "combined with."

Opticians speak of transposing a lens when they substi-

tute a glass of one form for an equivalent glass of another

180 180°

TEMPLE NOSE NOSE TEMPLE

Fig. 155.—Mode of reckoning axis of cylindrical eye-glass.

form. All that is necessary for this purpose is to see that

the powers of the lens in the two principal sections remain

the same as before. The following rules for transposing

cylindrical lenses may be useful

:

(1) To transpose a sphero-cylindrical lens into another

sphero-cylindrical lens or into a cross-cylindrical lens:

A lens given by the formula Q sph. O P cyl., ax. <p is

equivalent to either of the following combinations

:

a. Sphero-cylinder: (P+Q) sph. C -P cyl., ax. (<p ±90°)

b. Cross-cylinder : (P+ Q) cyl. , ax. <pO Q cyl. , ax. ( <p± 90°)

.

The power of the spherical component in the original com-

bination is Q dptr. in both principal sections, and the power

of the cylindrical component is P dptr. in the section which is

inclined to the line of reference at an angle (<p =*= 90°) ; so that

the combined power in this latter section is (P+Q) dptr.
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Accordingly, a spherical surface of power (P+Q) dptr.

must be combined with a cylindrical surface of power
—P dptr. and of axis-slope (^>=*=90°). With respect to the

double sign in the expression v
<£>=•= 90°), the rule is to select

always that one of the two signs which will make the slope

of the cylinder-axis positive ard less than 180°. Thus, for

example, +8 dptr. sph. O +2 dptr. cyl.', ax. 20° is equiva-

lent to +10 dptr. sph. O — 2 dptr. cyl., ax. 110° or to

+ 10 dptr. cyl., ax. 20° C +8 dptr. cyl., ax. 110°.

(2) To transpose a cross-cylindrical lens into a sphero-

cylindrical lens:

The combination P cyl., ax. <p O R cyl., ax. (<£>=*= 90°)

is equivalent to either of the following:

a. Sphero-cylinder: P sph. O (R—P) cyl., ax. (<p =*=90°), or

b. Sphero-cylinder: R sph. O (P—R) cyl., ax. <p.

Thus, +2 cyl., ax. 80° C +3 cyl., ax. 170° may be replaced

by either +2 sph. C +1 cyl., ax. 170° or +3 sph. O
-1 cyl., ax. 80°.

(3) To transpose a spherical lens into a cross-cylinder:

Q sph. is equivalent to Q cyl., ax. <p O Q cyl., ax. (<p =*= 90°),

where the angle (p may have any value between 0° and 180°.

For example, +5 sph. is equivalent to +5 cyl., ax. 10° O
+5 cyl., ax. 100°.

(4) The refracting powers of a toric surface in the prin-

cipal sections are Fy =(n
f— n)/ry and Fz = (n'— n)/rz . Let

us suppose that the axis of revolution is parallel to the

2/-axis. The toric refracting surface may be replaced by a

sphero-cylindrical lens in either of two ways, as follows:

.a. Fz sph. O (Fy—Fz) cyl., axis parallel to y-sads.

b. Fy sph. O (Fz— Py) cyl., axis parallel to 2-axis.

116. Obliquely Crossed Cylinders.—Oculists and optom-

etrists sometimes prescribe a bi-cylindrical spectacle-glass

with the axes of the cylinders crossed, not at right angles

(as in the so-called cross-cylinder) , but at an acute or obtuse

angle 7; and as it is not easy to grind a lens of this form,

the optician prefers to make an equivalent sphero-cylinder
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or a cross-cylinder, which will have precisely the same op-

tical effect as the prescribed combination of obliquely crossed

cylinders. His problem may be stated thus

:

Being given the refracting powers Fi, F2 of the two sur-

faces of the bi-cylindrical lens, and the angle y between

the directions of the axes of the cylinders, it is required to

calculate the refracting powers P and Q of the cylindrical

and spherical components, respectively, of the equivalent

sphero-cylindrical combination, together with the direction

of the axis of the cylinder; that is, it is required to transpose

Fi cyl., ax.<p C F2 cyl., ax. (<p+y)
into

Q sph. O P cyl., ax. (<p-\- a).

Simple working formula? for converting one of these lenses

into the other were developed

first by Mr. Charles F.

Prentice. The following

method is based on an ar-

ticle " On obliquely crossed

cylinders" by Professor S. P.

Thompson published in the

Philosophical Magazine (se-

ries 5, xlix., 1900, pp. 316-

324).

In Fig. 156 the straight

lines OA and OB are drawn

parallel to the cylindrical

axes of the bi-cylindrical lens,

sothatZAOB = 7. Through

O draw another straight line

OC, and let ZAOC be de-

noted by 6. In the sec-

tion of the lens at right

angles to OC the total r

§112):

Fi.cos
2 0+^2.cos 2

(y

Fig. 156.—Axes of obliquely crossed

cylinders.

efracting power will be (see

ey,
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and in the section containing OC

:

Fi.sin 2 0+^2.sin 2(7-0).

The sum of these two expressions is equal to (F1+F2); and

according to the theory of curved surfaces (§ 111), this sum
must also be equal to the sum of the maximum and mini-

mum refracting powers of the equivalent sphero-cylindrical

lens. Now, obviously, (P+0) will be the maximum (or

minimum) refracting power in a section of the latter lens

at right angles to the axis of the cylinder, whereas Q will be

the minimum (or maximum) refracting power in the sec-

tion containing the axis of the cyUnder; accordingly, first

of all, we find that we must have:

2Q+P =F1+F2 .

Now there is a certain value of the angle 6, say, 6 = a,

for which the first of the two expressions above will be a

maximum (or minimum) and the second a minimum (or

maximum) ; and if we can determine this angle a, the prob-

lem will practically be solved, because then we shall have:

P+0 = ^i.cos2a+F2 .cos
2(7- a),

Q = Fi.sin2a+F2.sin
2(7- a);

where (on the assumption that Q is the minimum refracting

power in the section containing the axis of the cylinder) a

denotes the angle between the cylindrical axis of the sphero-

cylinder and the cylindrical axis of the cylinder whose refract-

ing power is denoted by F\. Now in order to ascertain this

angle a, all we have to do (as will be obvious to any one

who is familiar with the elements of the differential calculus)

is, first, to differentiate the expression

Fi.cos 2 0+F2 .cos
2(7-0)

with respect to 6, and then, after writing a in place of 0,

to put the resultant expression equal to zero. Thus we ob-

tain the following equation for finding the angle a in terms

of the known magnitudes Fh F2 and 7

:

— 2i^i.sina .cosa+2F2.sin(7— a).cos(7— a)=0;
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which may also be put in the following form:

F\ _ F2

sin2(7— a) sin2a'

Moreover, since P = (P*+Q) — Q, we find:

P = Fi(cos2 a-sin 2 a)+F2 {cos 2(7~ a)— sin2(y- a)}

= Fi.cos2a+F2.cos2(7— a);

and if in this formula we substitute the value

sin2a
F, = -.

sin2(7— a)
Fi,

we shall find

:

sin27

sin2(7~ a)

v*y *V
a*

Fig. 157.—Graphical mode of finding cylindrical component (P) of

sphero-cylinder equivalent to two obliquely crossed cylinders of powers

F\ and F2.

Hence,

Fl

sin2(7~ a) sin2a sin27*
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which at once suggests an elegant and simple graphical

solution of the problem. For, evidently, according to the

above relations, the magnitudes denoted by Fh F2 and P
may be represented in a diagram (Fig. 157) by the sides of

a triangle whose opposite angles are 2(7— a), 2a and

(180°— 27), respectively. Hence the rule is as follows:

On any straight line lay off a segment AB to represent, ac-

cording to a certain scale, the magnitude of the refracting

power Fi; and let X designate the position of a point on AB
produced beyond B. Construct the ZXBC equal to twice

the angle between the axes of the two given cylindrical com-

ponents (ZXBC = 2 7); and along the side BC of this angle

lay off the length BC to represent the magnitude of the re-

fracting power F2 . Then the straight line AC will repre-

sent on the same scale the magnitude of the refracting power

P of the cylindrical member of the equivalent sphero-

cylindrical lens, and the Z BAC = 2 a will be equal to twice

the angle between the cylindrical axes of the surfaces whose

powers are denoted by F\ and P. For calculating the values

of P, Q and a, we have by trigonometry the following sys-

tem of formulae

:

P =+\/F2
1
+F2

2+2Fi.F2.cos2y,

Q=FM-P

tan2a

2

F2.sm2y

^ 1+F2.cos27'

which will be found to be applicable in all cases, whether

the signs of Fh F2 are like or unlike.

There is, to be sure, another solution also, in which the

cylindrical axis of the sphero-cylindrical lens is inclined to

the cylindrical axis of the cylinder of power Fi at the angle

(90°+ a). For if the refracting power Q of the spherical

member is assumed to be the maximum (instead of the

minimum) refracting power of the sphero-cylindrical com-

bination, then (P-f-Q) will be the minimum power in a sec-

tion at right angles to the axis of the cylinder; and in this
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case the refracting power of the cylindrical component will

be represented by the dotted line AC in Fig. 157 which is

equal to AC in length but opposite to it in direction. In

fact, in this case the formulae for P and Q will be as follows:

P= - VFl-]-Fi+2Fi.F2.GOs2y,

n_Fi±IW>Q 2 *

This result could have been obtained from the first result by

transposing; for, according to § 115, Q sph. O P cyl., ax.
<f>

is equivalent to (P+Q) sph. O —P cyl. ax. (<£=*= 90°), where

the symbols P and Q denote here the powers of the first

combination.

Moreover, since Q sph. O P cyl., ax.<£ is equivalent also

to (P+Q) cyl., ax.</> O Q cyl., ax. (<£=*= 90°), two obliquely

crossed cylinders may be replaced by a cross-cylinder of

powers (P+Q) and Q. In fact, since

(P+Q)+Q=Pi+P2
,

(P+Q)~Q = VPi+Pi+2Pi.P2.cos2 y,

it follows that

:

(P+Q)Q=F1.F2.sin'
2

y;

so that this formula will give us the product of the powers

of the equivalent cross-cylinder, and since their sum P+2Q
=Fi+F2 , the values of (P+Q) and Q may be obtained in-

dependently, without first finding the value of P.

The following numerical example will serve to illustrate

the use of the formula;

:

Given a combination of obliquely crossed cylinders as

follows

:

+4 cyl., ax. 20° C -2.75 cyl., ax. 65°;

let it be required to find the equivalent sphero-cylinder

and also the equivalent cross-cylinder.

We must put Pi = +4, because Pi denotes the power of

the cylinder whose axis-slope is the smaller of the two. Then

F2 = -2.75 and y =(65° -20°) =45°. Substituting these

values, we find

:

P=+4.86, Q=-1.8, a=-17°16'.
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Accordingly, the given combination is equivalent to one of

the three following:

+4.85 cyl., ax. 2° 44'O- 1.8 sph.

;

-4.85 cyl., ax. 92° 44' C +3.05 sph.;

+3.05 cyl., ax. 2° 44'C - 1.8 cyl., ax. 92° 44'.

If 7 = 90
o

, then P =F1-F2 , Q =F2 and a = 0°, or

P=F2 -Fi, Q=F\ and a = 0°; so that we can write:

Fi cyl., ax. <£ C F2 cyl., ax. (<£±90°)

is equivalent to

Fi sph. C (F2-Fi) cyl., ax. (<£±90°)

or

F2 sph. C (F1-F2) cyl., ax. cj>;

exactly as found in § 115.

PROBLEMS

1. The radius of a convex cylindrical refracting surface

separating air from glass (n = 1.5) is 8|- cm. What is its

refracting power in a normal section inclined to the axis of

the cylinder at an angle of 60°? Ans. +4.5 dptr.

2. A curved refracting surface separates air and glass

(n':n= 3: 2), and the radii of greatest and least curvature

at a point A on the surface are ry =+ 10 cm. and rz =
+5 cm. Find the interval between the two principal image-

points corresponding to an object-point lying on the normal

to the surface at A in front of the surface and at a distance

of 30 cm. from it. Ans. 67.5 cm.

3. The principal refracting powers of a thin astigmatic

lens surrounded by air are denoted by Fy and Fz . The prin-

cipal image-points corresponding to an axial object-point

M are designated by My and Mz . If the optical center of

the lens is designated by A, and if we put U=l/u, where

u=AM, then

M' M' =
Fy~ Fz

.
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4. The refracting powers of a thin astigmatic lens in the

two principal sections are +3 and +5 dptr. The lens is

made of glass of index 1.5. Find the radii of the two sur-

faces for each of the following forms: (a) Cross-cylinder;

(6) Sphero-cylinder; c) Plano-toric.

Ans. (a) Double convex cross-cylinder, radii 10 and

16 -| cm.; (6) Double convex sphero-cylinder, radius of

sphere 16 f cm., radius of cylinder 25 cm.; or convex me-

niscus sphero-cylinder, radius of sphere 10 cm., radius of

cylinder 25 cm.
;

(c) Radii of toric surface 10 and 16 J cm.

5 The principal refracting powers of a thin lens are +4
and —5 dptr. If the refracting power in an oblique normal

section is +2 dptr., what will be its refracting power in a

normal section at right angles to the first? and what is the

angle of inclination of the +2 section to the +4 section?

Ans. -3 dptr.; 28° 7' 32".

6. Two cylinders each of power +1.18 dptr. are com-

bined with their axes inclined to each other at an angle of

32° 3' 50". Show that the combination is equivalent to

+0.18 sph. O +2 cyl., axis midway between the axes of

the two given cylinders.

7. Show that

+2 cyl., ax. 0° C -3 cyl., ax. 53° 26' 14"

is equivalent to

-2.53 sph. C +4.06 cyl., ax. -22° 30'.

8. Transpose

-1.25 cyl., ax. 20° C +3.25 cyl., ax. 53° 41' 24.25"

into the equivalent sphero-cylinder.

, Ans. —0.5 sph. O + 3 cyl., ax. 65°,

or + 2.5 sph. O — 3 cyl., ax. 155°.

9. Transpose

+9.5 cyl., ax. 0° C +10 cyl., ax. 57° 40' 45"

into the equivalent sphero-cylinder.

Ans. +4.53 sph. C +10.43 cyl., ax. 30°,

or +14.96 sph. C - 10.43 cyl., ax. 120°.
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10. Find the sphero-cylindrical equivalent of

+2 cyl, ax. 20° C +3 cyl., ax. 70°.

Ans. +0.85 sph. C + 3.3 cyl., ax. 51° 42',

or + 4.15 sph. C -3.3 cyl., ax. 141° 42'.

11. Transpose

-1.75 cyl., ax. 120° C +1.25 cyl., ax. 135°

into the equivalent cross-cylinder.

Ans. +0.207 cyl., ax. 98° 30' C -0.707 cyl., ax. 8° 30'.

12. Transpose +4 cyl., ax. 80° C -2 cyl., ax. 120° into

the equivalent cross-cylinder.

Ans. +3.075 cyl., ax. 65° 50' C -1.075 cyl., ax. 155° 50'.

/



CHAPTER X

GEOMETRICAL THEORY OF THE SYMMETRICAL OPTICAL

INSTRUMENT

117. Graphical Method of tracing the Path of a Paraxial

Ray through a Centered System of Spherical Refracting

Surfaces.—Nearly all optical instruments consist of a com-

bination of transparent, isotropic media, each separated

from the next by a spherical (or plane) surface; the centers

of these surfaces lying all on one and the same straight line

called the optical axis of the centered system of spherical

surfaces, which is an axis of symmetry. In a symmetrical

optical instrument of this kind it is sufficient to investigate

the procedure of paraxial rays in any meridian plane con-

taining the axis.

The indices of refraction of the media will be denoted by

Tii, 712, etc., named in the order in which they are traversed

by the light; so that if m denotes the number of refracting

surfaces, the index of refraction of the last medium into

which the rays emerge after refraction at the mth surface

will be nm+1 . The indices of refraction of the two media

which are separated by the A:th surface (where k denotes

any integer between 1 and m, inclusive) will be nk and nk+1 .

The vertex and center of the kth surface will be designated

by Ak and Ck , respectively; and the radius of this surface

will be denoted by rk =AkCk . Moreover, if Mk , Mk+ i

designate the positions of the points where a paraxial ray

crosses the axis before and after refraction, respectively, at

the kth surface, these points will be a pair of conjugate axial

points with respect to this surface; and the points Mi, Mm+i

will, therefore, be a pair of conjugate axial points with respect

329
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to the entire centered system of m spherical refracting sur-

faces.

The accompanying diagram (Fig. 158) represents a merid-

ian section of an optical system of this kind. The straight

line MiBi represents the path of a paraxial ray in the first

medium (wi) which crossing the axis at Mi meets the first

surface
r

(i/i) in the point marked Bi. Similarly, the path

Fig. 158.—Path of paraxial ray through centered system of spherical re-

fracting surfaces.

of the ray from the first surface to the second surface is

shown by the straight line BiB 2 which crosses the axis at M2.

Thus, the entire course of the ray is shown by the broken

line M1B1B2B3M4 which is bent in succession at each of the

incidence-points Bi, B2, B 3 (supposing that m= 3, as repre-

sented in the diagram)

.

The figure shows also the path of another paraxial ray,

emanating from an object-point Qi near the optical axis but

not on it and represented here as lying perpendicularly

above Mi. This ray is the ray which leaves Qi along a straight

line which passes through the center Ci of the first refracting

surface and also through the point Q2 which is conjugate to

Qi with respect to this surface. This point Q2 can be lo-

cated by determining the point of intersection of the straight

line Q1C1 with the straight line M2Q2 drawn perpendicu-

lar to the axis at M2. Similarly, the point Q3 conjugate to

Q2 with respect to the second refracting surface will be at
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the point of intersection of the straight line Q2C2 with the

straight line drawn perpendicular to the axis at M 3 ; and

so on from one surface to the next. Provided, therefore, we
know the path of one paraxial ray through the system, it

is easy to construct the path of a second ray.

But the best graphical method of tracing the path of a

paraxial ray through a centered system of spherical refract-

ing surfaces consists in applying the construction described

Fig. 159.—Graphical method of tracing path of paraxial ray through cen-V

tered system of spherical refracting surfaces.

in § 76, as follows: If the straight line M1B1 (Fig. 159) rep-

resenting the path of the ray in the first medium meets the

perpendicular erected to the optical axis at the center Ci in

the point Xi, and if on this perpendicular a second point X/
is taken such that C1X1 : CiXi' = n2 : nh then the straight

line BiXi' will determine the path BiB 2 of the ray in the

second medium. Draw C2Y2 parallel to C1X1, and let Y2

designate the point of intersection of the straight lines

BiB 2 and C2Y2 ; and on C 2Y2 take a point Y2
' such that

C2Y2 : C2Y2
' = n 3 : n2 , and draw the straight line Y2'B 2 meeting

the third refracting surface in B 3 and intersecting in Z 3 the

straight line drawn through C 3 parallel to C2Y2. If on C 3Z 3

a point Z/ is taken such that C 3Z 3 : C 3Z 3
' = n 4 : n3 , then the

straight line B 3Z 3
' will determine the path of the ray after

refraction at the third surface. This process is to be re-

peated until the ray has been traced into the last medium.



332 Mirrors, Prisms and Lenses [§ 118

118. Calculation of the Path of a Paraxial Ray through

a Centered System of Spherical Refracting Surfaces.—Ob-

viously, just as in the case of a single spherical refracting

surface (§ 80), any figure lying in a plane in the object-space

perpendicular to the optical axis of a centered system of

spherical refracting surfaces will be reproduced by means
of paraxial rays by a similar figure in the image-space also

lying in a plane perpendicular to the optical axis.

Moreover, if we put

AkMk = uk ,
AkMk+i=wk',

the abscissa-formula (§ 78) for the kth surface may be writ-

ten:

nk+ i _ nk ,
nk+i—

n

k

uk uk rk

If also we employ the symbol

4 =AkAk+ i

to denote the distance of the vertex of the (k-\-l)th surface

from that of the A;th surface or the so-called axial thickness

of the (7c+l)th medium, then, evidently:

uk+ i = uk'—dk ;

which enables us to pass from one surface to the next.

If in these so-called recurrent formulae we give k in suc-

cession the values k = l, 2, . . .
,
(ra— 1), and if also in the

first formula we put finally k = m, we shall obtain (2m— 1)

equations; and if the constants of the system are all known,

that is, if the values of all the magnitudes denoted by n, r

and d are given, together with the initial value ui, which

denotes the abscissa of the axial object-point, these (2m— 1)

equations will enable us to determine the value of each of

the u's in succession. The position of the image point Mm+ i

conjugate to the axial object-point Mi will have been ascer-

tained when we have found the value of the abscissa um '.

The secondary focal point of the system is the point F'

where a paraxial ray which is parallel to the axis in the first

medium crosses the axis in the last medium; and if we put

Ui = oo
, then um ' =AmF' will be the abscissa of the second-
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ary focal point with respect to the vertex of the last surface.

Similarly, the primary focal point is the point F where a par-

axial ray must cross the axis in the first medium if it is to

emerge in the last medium in a direction parallel to the axis.

In this case, therefore, we must put um
f = oo and solve for

ui = AiF in order to obtain the abscissa of the focal point F
with respect to the vertex of the first surface of the system.

The focal planes are the planes at right angles to the axis

at the focal points F, F'.

Moreover, if we put 2/k
=MkQk , then according to the

formula for the lateral magnification in a spherical refracting

surface (§ 82), we can write for the kih surface:

2/k+i_ ftk V.
Vk nk+ \ Uk

'

and if we give k all integral values from k = l to k = m, we

shall obtain m equations, one for each surface, wherein the

denominator of the ratio on the left-hand side of each of

these proportions will be the same as the numerator of the

corresponding ratio in the preceding one of the series. Hence,

if we multiply together all of these equations, and if, finally,

we put

y=yi, y'=ym+i, ' n = nh n' = nm+h
we shall obtain

:

y' nui.u2
'.

. . Um'

n'u\.ui.

which may be written also

:

k=

TT
y n'J-J-Wk

'

k=i

y' _n 1 TV

where the symbol IT placed in front of an expression in this

way means merely that the continued product of all terms

of that type is to be taken. Thus having found the values

of all the u's, both primed and unprimed, we can calculate

by this formula the lateral magnification produced by the



334 Mirrors, Prisms and Lenses [§ 119

entire centered system of spherical refracting surfaces for

any given position of the object-point.

Moreover, for the kth surface the so-called Smith-

Helmholtz formula (§ 86) will have the form:

nk .yk . 6k = nk+ i.yk+ i. dk +h
where k = ZAkMkBk ; and if here also we give k all values

in succession from k = 1 to k = m, we shall obtain

:

ni.yi.di = n2.y2-62= • • • = nm +i.ym +i. m +i;

and finally:

n'.y'. 6' = n.y. 6,

where n, nr and y, y
f have the same meanings as above, and

6= 0i, 6'= m +i.

119. The so-called Cardinal Points of an Optical System.

The methods which have just been explained, although

perfectly simple in principle, involve a more or less tedious

process of tracing the path of a paraxial ray from one surface

to the next throughout the entire system. We have now
to explain the celebrated theory of Gauss (1777-1855) which

was developed (1841) in order to avoid as much of this labor

as possible, by keeping steadily in view the fundamental re-

lations between the object-space and the image-space. It is

easy to show that the imagery produced by a symmetrical op-

tical instrument in the vicinity of the axis is completely de-

termined so soon as we know the positions of the focal points

and one pair of conjugate points on the axis, together with

the ratio of the indices of refraction of the first and last media

of the system. However, for this purpose certain pairs of

conjugate axial points are distinguished above others on

account of their simple geometrical relations; and of these

the most important are the principal points and the nodal

points. These two pairs of conjugate points, together with

the focal points, are sometimes called the cardinal points of

the optical system. We shall explain now how these points

are defined.

(1) The Focal Planes and the Focal Points.—In every

centered system of spherical refracting surfaces there are
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two (and only two) transversal planes at right angles to the

axis which are characterized by the following properties:

A bundle of paraxial object-rays which all meet in a point

in one of these planes {called the primary focal plane) will

emerge from the system as a cylindrical bundle of parallel

image-rays; and, similarly, a cylindrical bundle of parallel

object-rays will emerge from the system as a bundle of image-

rays which all meet in a point in the other one of these planes

{called the secondary focal plane) . The points in which these

focal planes are pierced by the axis are the primary and sec-

ondary focal points F and F', respectively.

(2) The Principal Planes and the Principal Points.—Again,

in every symmetrical optical system there is one (and only

one) pair of conjugate transversal planes characterized by

the property, that in these planes object and image are con-

gruent; and, therefore, any straight line drawn parallel to the

axis will intersect these planes in a pair of conjugate points.

These are the so-called principal planes, one belonging to

the object-space {the primary principal plane) and the other

belonging to the image-space {the secondary principal plane).

The points H, H' where the optical axis crosses the prin-

cipal planes are the principal points of the system. Atten-

tion was first directed to these points by Moebius in 1829,

but it was Gauss who recognized their significance for the

development of simple and convenient general formulae in

the theory of optical imagery.

In the principal planes the lateral magnification is unity,

that is, y' — y. (And hence the principal planes and principal

points are called also, especially by English writers, the unit

planes and the unit points.) Consider, for example, the case of

a single spherical refracting surface, for which we found (§ 85)

y'_f _f'+W
V f+u r '

If we put y'=y, we find u' = u = 0] which means that the

principal points of a spherical refracting surface coincide with

each other at the vertex of the surface (§ 81). We saw likewise
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that these points coincided with each other at the optical

center of an infinitely thin lens (§ 94).

A useful rule is as follows:

To any ray in one region (object-space or image-space)

which goes through the focal point belonging to that region,
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the ray in these two regions will intersect in a point lying in

the principal plane of that region to which the focal point in

question belongs; as is illustrated in the accompanying dia-

grams at W and at V' (Fig. 160, a and b).

(3) The Nodal Planes and the Nodal Points.—Finally, in

every centered system of spherical refracting surfaces there

is also a pair of conjugate transversal planes characterized

by the property, that the angle between any pair of object-
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cipal plane in the point marked U', so that if ZHNU= 0,

ZH'N'U'= 0',then0' = 0.

Obviously, the quadrilateral NUU'N' is a parallelogram,

and hence H'N' = HN; that is, the step from one of the prin-

cipal points to the corresponding nodal point is identical with

the step from the other principal point to its corresponding nodal

point. The nodal points, therefore, lie always on the same
side of the corresponding principal points and at equal dis-

tances from them. If the primary nodal point and principal

point coincide, the same will be true of the secondary nodal

point and principal point. Moreover, since NN / =UU , =
HH', the interval between the nodal planes is precisely the

same as the interval between the principal planes.

If in the Smith-Helmholtz formula (§ 118) we put 0' =
0, we find for the lateral magnification in the nodal planes

of a centered system of spherical refracting surfaces

yl=—
y n"

where n and n' denote the indices of refraction of the first

and last media, respectively. Applying this result to the

case of a single spherical refracting surface, we obtain for

the nodal points N, N' the conditions ur = u = r, that is,

AN' =AN = AC. Consequently, the nodal points of a spher-

ical refracting surface coincide with each other at the center

C of the surface; as might have been inferred at once from

the fact that a central ray is not deviated by refraction at a

spherical surface.

(4) Various writers on optics have distinguished other

pairs of conjugate axial points besides the principal points

and nodal points, but none of these can be said to have

achieved a permanent place in the literature of the subject.

We may mention the so-called negative principal points, in-

troduced by Toepler in 1871, which are characterized by

the fact that for this pair of points the lateral magnification is

equal to —I; that is, y'=—y, so that the image is inverted

and of same size as object. Professor S. P. Thompson, hav-
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ing this property in view, has re-named them much more

happily the symmetric points of the optical system.

120. Construction of the Image-Point Q' conjugate to an

Extra-axial Object-Point Q.—If the principal planes and

focal planes have been determined, it will not be necessary

to trace the path of a ray in the interior of the system. Sup-

Fig. 162.—Construction of image-point Q' conjugate to object-point Q
in an optical system.

pose, for example, that Q (Fig. 162) designates the position

of an object-point not on the axis; the position of the point

Q' conjugate to Q may be constructed as follows:

Through Q draw a straight' line QV parallel to the axis

meeting the secondary principal plane in the point marked

V and also another straight line QF meeting the primary

principal plane in the point marked W. The required point

Q' will be found at the point of intersection of the straight

line V'F' with the straight line WQ' drawn parallel to the

axis. The feet of the perpendiculars let fall from Q, Q' on

to the axis will locate also a pair of conjugate axial points

M, M'. The construction is seen to be entirely similar to

that given in §§71, 81 and 92. The case represented in the

figure is that of a convergent optical system, in which parallel

object rays are converged to a real focus at a point in the

secondary focal plane. The student should draw for him-
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self the corresponding diagram for the case of a divergent

optical system.

121. Construction of the Nodal Points N, N\—Having de-

termined the position of the point Q' conjugate to Q, we can

easily locate the positions of the nodal points N, N'. For

example, on the straight line WQ' (Fig. 162) take a point Z
such that ZQ' = HH', and draw the straight line QZ meeting

the primary principal plane in the point U. Draw UU' par-

allel to the axis meeting the secondary principal plane in

the point U'. Evidently, the straight lines QU and QTJ' will

Fig. 163. -Construction of nodal points (N, N'), and proof of

relation I'F' = FR.

be parallel, and the points where they cross the axis will be

the nodal points N, N' (§ 119).

A simpler way of constructing the nodal points N, N' is

as follows

:

Through the primary focal point F draw a straight line

FW meeting the primary principal plane in the point marked

W, and through W draw a straight line parallel to the axis

meeting the secondary focal plane in a point marked I' in

Fig. 163. This point I' is the image-point of the infinitely

distant point I of the straight line FW. The straight line

drawn through I' parallel to FW will meet the axis in the

secondary nodal point N' ; and the position of the other nodal

point N can be found immediately.

The diagram shows also that

FH = N'F';
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whence it follows (§ 119) that

F'H' = NF.
Accordingly, the step from one nodal point to the correspond-

ing focal point is identical with the step from the other focal

point to its corresponding principal point. In fact, the three

segments of the axis FF', HN' and H'N all have a common
half-way point.

Incidentally, another useful relation may be seen at a

glance in Fig. 163. Let R designate the point where the ray

IH which passes through the primary principal point crosses

a
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will be at the point of intersection of the straight line H'Y'

with either of the straight lines W'Q' or V'F' shown in the

figure.

122. The Focal Lengths f, f .—Let us employ the symbols

co, co' to denote the slopes of a pair of conjugate rays which

pass through the principal points H, H'; thus, in Fig. 164

ZFHX= co, ZF /H /Y/ = co'; and since in the case of paraxial

rays we may write co andco' in place of tanco and tana/

(see § 63), we have:

FX = _ F^= '
,

FH W
' F'H'

°) '

Accordingly, dividing one of these equations by the other,

and taking account of the fact that F'Y' =XF (§ 121), we
obtain

:

FH _&/
F'H' co

'

Since the lateral magnification in the principal planes is

equal to +1, that is, since y'
' — y (§ 119), the Smith-Helm-

holtz formula (§ 118) for the pair of conjugate points

H,H' takes the form:

n'.co'=n.co,

where n and n' denote the indices of refraction of the first

and last media of the optical system.

If, therefore, the focal lengths of the optical system are de-

fined as the abscissa? of the principal points with respect to their

corresponding focal points, that is, if we put /=FH, /' = F'H',

where/and/' denote the primary and secondary focal lengths,

respectively, then combining the relations found above so

as to eliminate the angles co and co', we find:

/' n'

'

which may be put in words as follows: The focal lengths of

a centered system of spherical refracting surfaces are propro-

tional to the indices of refraction of the first and last media,

and are opposite in sign; except in the single case when the

optical system includes an odd number of reflecting surfaces f
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in which case the focal lengths will have the same sign (that is,

in this exceptional case, ///' = +w/n').

It appears, therefore, that the formula,

n'.f+n.f'=0,

which was found (§§ 79 and 96) to hold for a single spherical

refracting surface and for an infinitely thin lens, expresses,

in fact, a perfectly general relation which is true of any

centered system of spherical refracting surfaces. Consider,

for example, the optical system of the human eye in which

the first medium is air (n = l) and the last medium is the

To I at cc

To E at oo-

To J'ata?

Fig. 165.—Focal lengths (/,/') of an optical system.

so-called vitreous humor whose index of refraction is n'

=

1.336. In Gullstrand's schematic eye (see § 130) the

primary focal length is found to be /=+ 17.055 mm.,
whence, according to the above formula, the secondary

focal length is /'= -22.785 mm.
In particular, when the media of object-space and image-

space are identical (n
r = n) , the focal lengths are equal in mag-

nitude, but opposite in sign (
/' = —/) . This is the case with

most optical systems, since they are usually surrounded by
air. According to the definitions of the focal lengths given

above, it follows from § 121 that

FH = N'F' =/, F'lT =NF =/';

and hence we see that the nodal points (N, N') of an optical

system surrounded by the same medium on both sides coincide

with the principal points (H, H') ; for when n f = n, then

FH=/= -/' = FN, F'H'=/'= -/=F'N'.
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The focal lengths of a centered system of spherical re-

fracting surfaces may be defined also exactly as in §§ 83

and 95. If in Fig. 165 we put ZHFW= 0,ZH'F'V' = 0',

we can write:

HW H'V
tan '

*
tan 0'

'

and since HW = FT, H'V' = FJ, tan0 = 0, tan0' = 0', we
have:

Accordingly, we may also define the focal lengths as follows

:

The focal length of the object-space (f) is equal to the ratio of

the linear magnitude of an image formed in the focal plane

of the image-space to the apparent (or angular) magnitude of

the correspondingly infinitely distant object; and, similarly, the

focal length of the image-space (/') is equal to the ratio of the

linear magnitude of an object lying in the focal plane of the

object-space to the apparent (or angular) magnitude of its in-

finitely distant image.

The focal lengths may be said, therefore, to measure the

magnifying power of the optical instrument, for if the appara-

tus is adapted to an emmetropic eye (§ 153), the image will

be formed at infinity, and the magnifying power will be deter-

mined by the ratio of the apparent size of the image to the

actual size of the object (see Chapter XIII).

123. The Image-Equations in the case of a Symmetrical

Optical System.—The image-equations are a system of re-

lations which enable us to find the position of an image-

point Q' (Fig. 162) conjugate to a given object-point Q.

The position of the point Q will be given by its two co-

ordinates referred to a system of rectangular axes in the

object-space in the meridian plane in which the point Q lies.

Naturally, the optical axis will be selected as the axis of

abscissae and either the primary focal point F or the primary

principal point H as the origin. Thus, if we put

FM = z
;

HM=u, MQ=2/,
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the object-point Q will be the point (x, y) or the point (u, y),

according as we take the origin at F or H, respectively.

Similarly, in the image-space, if we put

F'M' = :r/, H'M' =< M'Q' = y',

the coordinates of Q' will be denoted by (x
f

,
y') or (u

f

,
y')

according as the origin of this system of axes is at F' or H',

respectively.

a. The image-equations referred to the focal points F, F'.

—

The following proportions are obtained from the two pairs

of similar triangles FHW, FMQ and F'H'V, F'M'Q':

HW = FH M'Q^F'M'.
MQ FM' H'V' F'H''

and since

HW = M'Q' = 2/'
f
H ,

V' =MQ = 2/, FH=/, F'H'=/',

we find immediately

:

y x f"
whence the coordinates x', y' can be found in terms of the

given coordinates x, y and the focal lengths /, /'.

These formulae, which were obtained formerly for cer-

tain simple special cases (§§ 69, 85 and 93) are seen, there-

fore, to be entirely general and applicable always to any

symmetrical optical system. The so-called Newtonian

form of the abscissa-relation, viz.,

x.x'=ff,

shows that the product of the focal-point abscissae is constant.

b. The image-equations referred to the principal points

H,H'.—Again, the following proportions are derived from

the two pairs of similar triangles FHW, QVW and F'H'V,

Q'W'V:
WV=VQ =HM VW=W^' = ITM'.
HW FH FH ' H'V F'H' FTT '

and since WV=WH+HV=Q'M'+MQ =-(?/-?/) and

V'W' = V'H'+H'W' =QM+M'Q' = (?/-?/), we find:

y'—y _ _ u y'-y_uf

y' f y
/'*
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These relations give the following expressions for the lateral

magnification

:

y'_ f _f'+W_ f u^

y f+u f f'u
'

Clearing fractions, we obtain

:

f.u
f+f.u+u.u' = 0,

and dividing through by u.u'', we have the well-known

abscissa-relation

:

£+4+1=0;
u u

which may also be obtained directly by substituting x =/+w,
x'=f'-\-u' in the equation x.x' =}.}'.

By means of these formulae, the coordinates v!
, y

f may
be found in terms of the given coordinates u, y and the

focal lengths/,/'.

Since n'.f+n.f = (§ 122), we have also another expres-

sion for the lateral magnification, viz.,

y' _n.u f

m

y n'.u

'

winch has likewise been obtained already in the special case

of a single spherical refracting surface (§ 82).

A simple and convenient method of locating the positions

of pairs of conjugate axial points is suggested by the ab-

scissa-relation

£+4+1=0;
u u

which may be put in the following form

:

HF
,
H'F'

u u
Suppose, therefore, that the axial line segment H'F r

is shoved

along the optical axis until the secondary principal point H'

is brought into coincidence with the primary principal point

H, and that then the optical axis in the image-space (x
r

) is

turned about H until it makes a finite angle with the op-

tical axis in the object-space (x), as represented, for example,

in Fig. 166. Through the focal points F and F' draw the
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straight lines FS and F'S parallel to H'F' and HF, respec-

tively, and let S designate their point of intersection. Then

any straight line drawn through S will intersect x and x' in

a pair of conjugate axial points M, M'; for if we put w=HM
and w' = H'M' in the equation above, the equation will

Fig. 166.—Construction of point M' conjugate to

axial object-point M in an optical system.

evidently be satisfied. The vertex S of the parallelogram

HF'SF is the center of perspective of the two point-ranges

x and x'.

c. The image-equations referred to any pair of conjugate

axial points 0, O'.

If the origins of the two systems of rectangular axes are

a pair of conjugate axial points 0, 0' whose distances from

the focal points F, F' are denoted by a, a', respectively, so

that FO =a
;
F'O' = a'; and if we put

OM = z, 0'M' = z',

then

x = a-\-z, x' = a'-\-z';

and if these values of x and x' are substituted in the equa-

tions
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we obtain

:

y'_ f _a'+z'

Since a.a' =/./', the relation between z and z
r may be put in

the form:

^'+1=0,
Z Z

where the constants are now a and a' instead of/ and/'.

Suppose, for example, that the pair of conjugate axial

points 0, O' is identical with the pair of nodal points N, N';

then

a = FO =FN = -/', a' = F'O' = F'N' = -/;

so that the image-equations referred to the nodal points

will have the following forms

:

1+1-1 = t=J-= z^l
z z

f

y z-f /' '

where z =NM, 2'=N'M'.

d. The image-equations in terms of the refracting power

and the reduced vergences (see §§ 105 and 106).

The refracting power of the optical system is defined

(§ 105) by the relations:

/ T
where n, n' denote the indices of refraction of the first and

last media. Similarly, the reduced vergences (§ 106) with

respect to the principal points are

:

u= n
- w-%.
U U

If, therefore, in the image-equations referred to the prin-

cipal points we eliminate /, /' and u, u' by means of these

two pairs of formulae, we obtain the image-equations in the

following exceedingly useful and convenient form:

v' U'
U' = U-\-F —=—

.

If the linear magnitudes are measured in terms of the meter
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as unit of length, the magnitudes denoted here by U, JJ'

and F will all be expressed in dioptries (§ 107).

124. The Magnification-Ratios and their Mutual Re-
lations.—(a) The lateral magnification y. This has al-

ready been defined as the ratio of conjugate line-segments

lying in planes at right angles to the optical axis. The fol-

lowing expressions were obtained for this ratio in § 123:

_y' _f_x' _ f J'+v! _J.v! _n.u' _XJ
.U

y x /' J+u f f'.u n'.u U'''

whence we see that the lateral magnification is a function

of the abscissa of the object-point, and that in any optical

system it may have any value from— oo to + oo depending

on the position of the object.

(b) The axial magnification or depth-ratio x. If x, x' de-

note the abscissae with respect to the focal points of a pair

of conjugate axial points, and if x-\-c, x f

-\-c' denote the ab-

scissae of another pair of such points immediately adjacent

to the former, then, since

x.x'=f.f = (x+c) (x'+cf

),

and since moreover the product c.c' is a small magnitude of

the second order as compared with either of the small factors

c or c', and is therefore negligible, we find

:

c.x'-\-c.x = 0.

The ratio c' : c of small conjugate segments of the axis

is called the axial or depth-magnification. If this ratio is

denoted by the symbol x, then, according to the equation

above

:

C X x2 '

so that, whereas the lateral magnification is inversely pro-

portional to the abscissa x, the depth-magnification is inversely

proportional to the square of x. In fact, the relation between

the axial magnification and the lateral magnification may
be expressed as follows

:

U2
f n

'
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The axial magnification or " depth-elongation' ' of a small

object is proportional to the square of its lateral magnification.

If, therefore, we take a series of ordinates, 1, 2, 3, 4, etc.

(Fig. 167), all of equal height and at equal intervals apart

Fig. 167.—Relation between axial or depth-magnification and lateral

magnification.

(like a row of telegraph poles), their images will be of un-

equal heights and at unequal distances apart; but the in-

tervals between the successive images will increase or di-

minish far more rapidly than the corresponding changes in

their heights. Accordingly, the image of a solid object can-

not, in general, be similar to the object, but will be distorted,

since the dimension parallel to the axis of the optical system

is altered very much more than the dimensions at right angles

to the axis. This uneven distribution of the images of ob-

J
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the more distant objects appear to be compressed up toward

those in front of them " (Professor S. P. Thompson).

(c) The angular magnification or so-called convergence-

ratio z. If the slopes of conjugate rays are denoted by 0, 0',

that is, if we put = ZFMJ, 0' = ZF'MT (Fig. 168),

where M, M' designate the points where the ray crosses the

axis in the object-space and image-space, respectively, and

J and V designate the points where it crosses the primary

and secondary focal planes, then evidently:

tan0=
lS'

tan(?
' =
5FF-

But the focal lengths are denned by the equations (§ 122):

FT FJ
' tan0'

J tan0"
and therefore

:

tan = —z- , tan 0' = -p-

.

Eliminating the intercepts FJ and FT, we obtain:

= tan0_' = _x_ = _/
*~tan0~ /' x"

where the ratio z=tan0' : tan (or 0' : 0) is called the

angular magnification or the convergence-ratio. It is directly

proportional to the abscissa x of the object-point M.
The three magnification-ratios jc, y and z are connected

by the following relation:

JL=1 .

x.z

PROBLEMS

1. Taking the index of refraction of water = |, show

that the sun's rays passing through a globe of water, 6 inches

in diameter, will be converged to a focus 6 inches from the

center of the sphere.

2. A small object is placed at a distance u from the nearer

side of a solid refracting sphere of radius r and of refractive
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index n. Show that the distance of the image from the other

side of the sphere is

,_ 2r(u— r) — n.u.r
U
~2(n-l)u-(n-2)r'

and find the lateral magnification.

3. A luminous point is situated at the first focal point of

an infinitely thin symmetric double convex lens made of

glass (of index 1.5) and surrounded by air. The radius of

each surface is 15 cm. Show that the image formed by rays

which have been twice reflected in the interior of the lens

before emerging again into the air will be on the other side

of the lens at a distance of 2.5 cm. from it.

4. An optical system is composed of two equal double

convex lenses. The index of refraction of the glass is n =

1.6202, and the radii, thicknesses, etc., are as follows:

ri=-r4= 47.92243; r3 = -r2 = 9.39617;

^ = ^3 = 0.2; d2 = 2.4287.

If an incident paraxial ray crosses the axis at a distance

u\—— 7.31101 from the vertex of the first surface, show

that the emergent ray will cross the axis at a distance u\—
33.65725 from the vertex of the last surface.

5. A. Gleichen in his Lehrbuch der geometrischen Optik

gives the following data of P. Goerz's "double anastigmat"

photographic objective, composed of three cemented lenses,

the first being a positive meniscus of crown glass, the second

a double concave flint glass lens, and the third a double con-

vex crown glass lens

:

Indices of refraction:

m = n b = l; n2 = 1.5117; w3= 1.5478; n 4= 1.6125

Radii:

n= - 0. 128965 ; r2= - 0.049597 ; r3 = +0. 196423

;

r 4
= -0.1266629

Thicknesses:

dl= +0.01277; d2 = +0.00664; d,= +0.02114.

Show that the second focal point of this system is at a dis-

tance of +1.111095 from the vertex of the last surface. (See
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scheme for calculation of paraxial ray through a centered

system of spherical refracting surfaces, § 181).

6. Define the nodal points N, N' and show that FN= -/',

F'N' = —/, where F, F' designate the positions of the focal

points and /, /' denote the focal lengths of the optical system.

Under what circumstances are the nodal points identical

with the principal points?

7. Derive the image-equations referred to the principal

points.

8. Given the positions on the optical axis of the principal

points and of the focal points; construct the nodal points.

Also, construct the point Q' conjugate to a given object-

point Q. Draw diagrams for convergent and divergent

systems.

9. Prove that

n'./+w./' = 0,

where / and /' denote the focal lengths of the optical system,

and n and n' denote the indices of refraction of the first and

last media.

10. A small cube is placed on the axis of a symmetrical

optical instrument with one pair of its faces perpendicular

to the axis. Find the two places where the image of the cube

will also be a cube. (Assume that the instrument is sur-

rounded by the same medium on both sides.)

Ans. At the points for which the lateral magnification is

+ lor -1.

11. An object is placed 3 inches in front of the primary

focal plane of a convergent optical system. Show that the

image will be one-and-a-half times as large as it was at first

if a plate of glass (n = 1.5) of thickness 3 inches is interposed

in front of the object.

12. Show that the axial magnification at the nodal points

has the same value as the lateral magnification in the nodal

planes.

13. A symmetrical optical instrument is surrounded by

the same medium on both sides. If the images of two small
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objects A and B on the axis are formed at A' and B', show

that the ratio of A'B' to AB is equal to the product of the

lateral magnifications for the pairs of conjugate points A, A'

and B, B'.

14. Show that in a symmetrical optical instrument there

are two pairs of conjugate points on the axis for which an

infinitely small axial displacement of the object will cor-

respond to an equal displacement of the image ; and that the

focal points are midway between these points.

15. Show that in a symmetrical optical instrument sur-

rounded by the same medium on both sides there are two

points on the axis where object and image will be in the same

plane; and that if a denotes the distance between the prin-

cipal planes, the distance between these two points will be

Va(a+4f).
16. In a centered system of m spherical refracting surfaces

the vertex of the &th surface is designated by Ak . A par-

axial ray crosses the axis before refraction at the first surface

at a point Mi which coincides with the primary focal point F
of the optical system. Before and after refraction at the

fcth surface this ray crosses the axis at Mk and Mk+ i, re-

spectively. If we put wk =AkMk , wk' =AkMk+ i, show that

u2.us . . . um „ A

U\.U<i. . . Wm-1
where / denotes the primary focal length of the optical

system.

17. If the symbols wk , wk , employed in the same sense as

in the preceding problem, refer to a paraxial ray which is

incident on the first surface of the system in a direction

parallel to the optical axis, show that

71 u\.U2 . . . U^ ,_ UVU2 . » ^m
n' U2.U3. . . Um ' U2.U3. . . um

'

where /, /' denote the focal lengths of the system and n, n'

denote the indices of refraction of the first and last media.

18. Employing the formulae of No. 17, determine the focal

lengths of a hemispherical lens of glass of refractive index
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1.5; and find the positions of the principal planes and the

focal planes.

Ans. If r denotes the radius of the curved surface, and if

distances are measured from the vertex of this surface, the

distances of the focal points are — 2r and +7r/3, and the

distances of the principal points are and +r/3. The focal

length is twice the length of the radius.

19. If a paraxial ray, proceeding originally in a direction

parallel to the axis of a centered system of spherical refract-

ing surfaces (as in No. 17), crosses the axis in the medium of

index nk at a point Mk whose distance from the vertex of

the kih surface is wk = AkMk (Uk = nk/uk), show that

Fhk = Fhk-i (Uk+Fk) (
———— — —-),

Vc7k-i+/'k-i nk I

where Fk denotes the refracting power of the A;th surface,

Fi,k denotes the refracting power of the system of surfaces

bounded by the 1st and kth. inclusive {F\,\ = Fi and Fi, = 0),

and dk_i =Ak_i Ak denotes the axial thickness between the

surfaces bounding the medium of index nk .



CHAPTER XI

COMPOUND SYSTEMS. THICK LENSES AND COMBINATIONS

OF LENSES AND MIRRORS

125. Formulae for Combination of Two Optical Systems

in terms of the Focal Lengths.—Suppose that the optical

system consists of two parts I and II, each composed of

a centered system of spherical refracting surfaces with their

optical axes in the same straight line. On a straight line

parallel to this common optical axis take two points P, P'

(Fig. 169), which we shall assume to be a pair of conjugate

points with respect to the compound system (I+11); and

X'

P Vi'
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the primary focal point of system I ; and select also the posi-

tions of the principal points Hi, Hi' and H2 , H2
' of systems

I and II, respectively. Through Fi draw the straight line

PWi meeting the primary principal plane of system I in the

point Wi; take Hi'Wi' = HiWi, and draw the straight line

Wi'G2 parallel to the axis meeting the primary principal

plane of system II in the point G2 ; take H2'G 2
' =H 2G2 , and

draw the straight line G2
/P /

, which must necessarily cross

the optical axis at the secondary focal point F2
' of system II.

Let the straight line drawn through P parallel to the op-

tical axis meet the primary and secondary principal planes

of system I in the points designated by Vi and Vi', respec-

tively; and select a point on the optical axis for the position

of the secondary focal point F/ of system I. Through Fi'

draw the straight line V/Fi' meeting the primary principal

plane of system II in L2 ; take H2'L2
' =H2L2 , and draw the

straight line L2'P', which will cross the optical axis in the

secondary focal point F' of the compound system.

Let the straight line drawn through P' parallel to the op-

tical axis meet the primary and secondary principal planes

of system II in the points K2 and K2 ', respectively ; and let

O designate the point of intersection of the pair of straight

lines W/G 2 and V/L2 . The point where the straight line K2

crosses the optical axis will be the position of the primary

focal point F2 of system II. Let the straight line K2F2 meet

the secondary principal plane of system I in the point T/,

and take HiTi = Hi'T/; then the straight line PTi will cross

the optical axis at the primary focal point F of the com-

pound system.

The diagram constructed according to the above direc-

tions represents a perfectly general case. The focal lengths

of the component systems are: /i = FiHi, /i
/ = Fi

/H/ and

/2 =F2H2 , /2
/ =F2

/H2
/

; and the focal lengths of the compound
system are: /=FH, /'=F'H'. The step from the secondary

focal point of the first system to the primary focal point of

the system will be denoted by the symbolA; thus, A = Fi'F2 .



358 Mirrors, Prisms and Lenses [§ 125

Now if we know the positions on the optical axis of the

focal points Fi, Fi'and F 2 , F2
' of the two component systems,

together with the values of the focal lengths fh // and /2 , /2 ',

it is easy to calculate the positions of the focal points F, F'

and the values of the focal lengths /, /' of the compound

system; as will now be shown.

The position of the primary focal point F of the compound

system may be found from the fact that F and F2 are a pair

of conjugate axial points with respect to system I, and hence

(§123, a);

FiF. FiTi-A/i'.

And, similarly, the position of the secondary focal point F'

may be found from the fact that Fi' and F' are a pair of con-

jugate points with respect to system II, so that

F/"EV 77* T7I / i* J* /

2 r .r 2r i =J 2 .J 2 .

Accordingly, the positions of the focal points F, F' with re-

spect to the known points Fi, F2 ', respectively, are given by

the following formulse

:
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and hence:

FH=g|.FH,

Now FH 1 =FF 1+F 1H 1=-^+/1=-£(/1'-A);

and F2H 1'=F2F 1

,

-fFi
,H 1

'=/1
,-A.

Accordingly, putting FH=/, F2H2 =/2 , we obtain:

f /i >h
} ~ ~a~'

whereby the primary focal length of the compound system

may be calculated.

Similarly, from the figure we obtain the relations:

FTT _ IFF H/Vi' ^
F/H/

.

F ,H2
,~H 2

,L2

,_ H 2L2
~ Fi'H 2

'

and since F'H' =/', F^H/ =//,

, FHa
/-FF,'+F,/H,'-^+/»/-^(/«+A)

lA A
F/H2 = Fi F2-r-F2H 2 =/2-f-A,

we obtain an analogous expression for the secondary focal

length of the compound system, as follows

:

J A '

By varying the interval A, which is the common denom-

inator of all these expressions, it is obvious that it is possible

with two given component systems to obtain combinations

of widely different optical effects. In particular, when

Fi' coincides with F2 , so that the interval A vanishes, the

focal points F, F' will be situated both at infinity, so that

the focal lengths /, /' will be infinite also. This is the case,

for example, with the optical instrument known as the tele-

scope; and, accordingly, any optical system which trans-

forms a cylindrical bundle of parallel rays into another

cylindrical bundle of parallel rays is called a telescopic (or

afocal) system. The simplest illustration of such a system

is afforded by a single plane refracting surface or by a plane

mirror.
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126. Formulae for Combination of Two Optical Systems

in terms of the Refracting Powers.—Although the formulae

derived in the preceding section are very simple and con-

venient, Gullstrand's system of formulae in terms of the

refracting powers possesses certain advantages and is even

more useful. The latter formulae may be derived immedi-

ately from the former, as will now be shown.

In Gullstrand's system the interval between the two

component optical sj^stems is expressed, not by A, but by

the reduced distance (§ 104) c of the primary principal point

H2 of system II from the secondary principal point H/ of

system I. Thus, if nh n2 and n2 , n^ denote the indices of

refraction of the first and last media of systems I and II,

respectively, then

H/H2
c = .

n2

The connection between the two magnitudes c and A is

easily obtained; for since

F 1T2 =F 1

,H/+H 1
,H 2+H 2F2 ,

we find immediately:

A=/i'+n2.c-/2 .

Now let us introduce the following symbols:

/i /i h h J J

where F\, F2 denote, therefore, the refracting powers of the

component systems and F denotes the refracting power of

the compound system (§§ 105 and 123, d). Hence, since

/l==
~FiJ

/2=F2

we may write:

Now if this value of A is substituted in either of the formulae

J ~ "A"
J J " A '
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and if the focal lengths are expressed in terms of the refract-

ing powers, we find

:

F=Fl+F2 -c.Fl.F2 ;

which is Gullstrand's formula for the refracting power

of the compound system in terms of the refracting powers

of the two component systems and of the interval c between

them.

Likewise, if in the formulae

-p -p _/i*/i -p /-p/ _ _h-h
A '

2

A
F

we eliminate /i, // and f2 , // and put A=

—

n2 ri „ , we ob-
t \.t 2

tain for the reduced steps FiF and F2
/F/

the following ex-

pressions:

FiF =J^_ FVF =
F±

m ~F.Fi 7i3
" F.F2

The positions of the focal points F, F' of the compound sys-

tem with respect to Hi, H2 ', respectively are obtained as

follows

:

H XF = H1F1+F1F = FiF-m/Fi,

H2'F' =H2
,F2

,+F2
,F / =F2'F

,+n3/>2 ;

and if herein the values of FiF and F2'F' are substituted,

and if also we note that

F-F^F^l-c.Fi), F-F2 =Fi(l-c.F2),

we obtain finally:

HiF l-c.F2 H2'F' 1-c.ffi

m F ' m ~ F '

Moreover, since

H 1H =H 1F+FH = HiF+m/F,
H 2'H' =H2'F'+F'H' = WF'+rh/F,

the Gullstrand system of formulae for the combination of

two optical systems may be written as follows

:

HiH F 2 H2 H F\

~W
=
~F'

C} ~^~ =
~F X

'

F=Fl+F2 -c.F l.F2 .

Accordingly, if the positions of the principal points Hi, H/
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and H2 , H2
' of the two component systems, the refracting

powers F\y F2 and the indices of refraction m, n2 and n3 are

known, we can calculate the reduced interval c and find the

refracting power F of the compound system and the posi-

tions of the principal points H, H'. We shall see numerous

applications of these formulae in the succeeding sections of

this chapter.

127. Thick Lenses Bounded by Spherical Surfaces.—
When a centered system of spherical refracting surfaces con-

sists of two surfaces, it constitutes a spherical lens involving

three media, viz., the medium of the incident rays (ni), the

medium comprised between the two spherical surfaces,

sometimes called the lens-medium (n2), and the medium of

the emergent rays (n 3), which is generally but not necessarily

the same as that of the incident rays. Usually, a lens is de-

scribed by assigning the values of the three indices of re-

fraction and the positions of the centers Ci, C2 and the ver-

tices Ai, A 2 on the optical axis; the usual data being the

radii ri=AiCi, r2 =A2C2 and the thickness d=A\A2 . The
lens may be regarded, therefore, as a combination of two

spherical refracting surfaces whose refracting powers Fi, F2

are given by the formulae (§ 105)

v fh-ni „ n 3-n2
r \ = , r 2 = .

n r2

Since the principal points of a spherical refracting surface

coincide with each other at the vertex of the surface (§§ 81

and 119), the interval c=—-—-= * *
, and therefore

n2 n2

d
c=—

.

n 2

Accordingly, if, by way of abbreviation, we introduce the

special symbol

N = n2 \
(n2 -ny)r2 -(n2 -n3)ri}+(n2 -n3)(n2 -ni)d

to denote a constant of the lens, we obtain, by substituting
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the values of Fh F2 and c in the formula F=Fi+F2— c.Fi.F2 ,

the following expression for the refracting power F of a lens:

n2.r1.r2

where the value of F will be given in dioptries in case the

distances n, r2 and d are all measured in meters (§ 107).

The positions of the principal points (H, H') of a lens are

determined in the same way by the formulae

:

AiH n2 -n3 , A2H' n2 -ni ,= ^7— n.d, = ^r—r2.d;

and the positions of the focal points (F, F') may likewise be

calculated from the following expressions:

— = -^{712.7-24
A2F' r2=— \n2.r\ — (712— n{)d
713 N

%

When, as is usually the case, the lens is surrounded by the

same medium on both sides, we may put

m = n3 = n, n2 =n';

and then the above formulae become

:

N = (n' - n) {
n' (r2 - r 1) + (n'- n)d }

;

N
F =

n .n.r2

AiH n' — n , A2H' n f— n 1= Tf- n.d, = - -
1rf- r2.d;

n N n N
AiF n\ , ft NJ ]

A2F' r2 \ , f , NJ-^ n'.r2+(n
f -n)d\, —— =~\ n'.n- {n'—n)

d

n N{ j n N
[

The nodal points (N, N r

) of a lens surrounded by the same

medium on both sides coincide with the principal points

(§ 122).

The positions of the focal points and principal points

may be exhibited in the case of a thick convergent lens in

the following manner, as described in Grimsehl's Handbuch

der Physik:

Two thin piano-lenses, each 4 cm. in diameter, are ce-

mented with Canada balsam to the opposite faces of a glass
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cube of edge 4 cm. and made of the same glass, so as to form

a thick symmetric double convex lens, as represented in

Fig. 170, a, b and c. A diaphragm with three parallel horizon-

tal slits is placed in the path of a cylindrical beam of parallel

rays so as to separate it into three smaller beams, and the

lens is adjusted so that the middle beam proceeds along

the axis of the lens. The paths of the rays in air can be

rendered visible by tobacco-smoke and may be photo-

graphed. In this way figures will be obtained similar to

those shown in the diagrams. The position of the second-

ary focal point F' is shown by the point of convergence of

the rays on emergence (Fig. 170, a). A point in the second

principal plane of the lens may be located by rinding the

point of intersection of an incident ray parallel to the axis

with the corresponding emergent ray (§ 119), as indicated

by the dotted lines in the figure; and the second principal

point H' will be at the foot of the perpendicular dropped

from this point on to the axis. If the rays are sent through

the lens from the opposite side (that is, from right to left in

the drawing, Fig. 170, 6), they will intersect on emergence

in the primary focal point F; and the position of the primary

principal point H may be found in exactly the same way
as above. The two diagrams Figs. 170, a and b, are com-

bined in one in Fig. 170, c. In Fig. 170, d, the lens is con-

cave towards the incident light and convex when viewed

from the other side; and this figure shows very clearly how
the focal points F, F' and the principal points H, H' may be

both unsymmetrically placed with respect to the lens, al-

though here also we have, as before, FH = H'F'.

128. So-called " Vertex Refraction " of a Thick Lens—
The step from the second vertex (A2) of a lens to the second

focal point (F'), which may be denoted by v, is sometimes

called the "back focus" of the lens; that is, v=A2~F'. If

the lens is surrounded by the same medium (n) on both

sides, then v/n = (l — c.Fi)/F, where F denotes the refract-

ing power of the lens, F\ denotes the refracting power of
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the first surface, and c=d\n' denotes the reduced thickness.

The reciprocal of this magnitude v/n is called the vertex re-

fraction of the lens ( — = VJ and its relation to the re-

fracting power is given by the formula:

F FV =
1-c.Fi n'—n d

ri n
If F is given in dioptries, the values of d and n must be ex-

pressed in meters; and then the expression above will give

the value of V in dioptries. The importance of this function

V in the theory of modern spectacle lenses has been pointed

out by Von Rohr; it is measured from the second face of the

lens because that is the side next the eye. When a lens

(with spherical surfaces) is reversed by turning it through

180° around any line perpendicular to its axis, the refracting

power F remains the same, whereas the vertex refraction V
will be different unless the lens is a symmetric lens or in-

finitely thin, in which latter case d = and V—F. Thus,

whereas the refracting power of a lens is the same whether

the light traverses it from one side or the other, the vertex

refraction depends essentially on which side of the lens is

presented to the incident rays.

129. Combination of Two Lenses.—Let us take the sim-

plest case, and suppose that the system is composed of two

infinitely thin co-axial lenses, each surrounded by air. Let

Ai and A2 designate the points where the optical axis meets

the two lenses, and let the interval between them be denoted

by c; that is, put c = AiA2 . Since the principal points of

an infinitely thin lens coincide with each other at the

point A where the axis crosses the lens, and since the inter-

vening medium is assumed to be air of index unity, this

distance c has here the same meaning as the reduced in-

terval c = Hi'H2/n2 in the general formulae of § 126. Ac-

cordingly, we may write immediately the following system

of formulae for a combination of two thin lenses of refracting
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powers Fi, F2 , surrounded on both sides by air and sepa-

rated by the distance c:

F=Fl+F2
- c.F1.F2 ;

AiH=-^r> A2H'=—-^-;

AiF=-
1-c.Fo A.F- 1"^1

F ' "" F
These formulae may also be expressed in terms of the focal

lengths /i and/2 , as follows:

f_ Mi
J

/1+/2-C'

AM-U A&—U AlF=-^p^, A2F-^p).
J2 /l J2 /l

The positions of the focal points F, F' and the princi-

K J L

Fig. 171, a.—Combination of two thin lenses. Graphical method
of determining the positions of the first focal point (F) and
principal point (H) : Case when both lenses are convex.

pal points H, H' of a combination of two infinitely thin

lenses surrounded by air may be constructed geometrically

as follows

:
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Draw a straight line to represent the common axis of the

pair of thin lenses, and mark the points Ai and A2 (Fig. 171,

a, b, and c) where the axis crosses the lenses, and also the

positions of the primary focal points Fi and F2 . Through

F2 draw a straight line perpendicular to the axis, and take

on it a point K such that F2K =F2A2 =/2; this point K lying

Fig. 171, b.—Combination of two thin lenses. Graphical method
of determining the positions of the first focal point (F) and
principal point (H) : Case when first lens is concave and second

lens convex.

above or below the axis according as the second lens is con-

vex or concave, respectively. Through K draw a straight

line parallel to the axis and through Ai a straight line per-

pendicular to the axis; and let L designate the point where

these two lines intersect. Moreover, let P designate the

point of intersection of the pair of straight lines LFi and KAi.

The foot of the perpendicular let fall from P on to the axis

will be the primary focal point F of the compound system;

and the ordinate FP will be equal to the primary focal length

f of the compound system; and hence if the quadrant of a
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circle is described around F as center with radius FP, it will

cut the axis at the primary principal point H, which lies to

the right or left of F according as the point P falls above or

below the axis.

According to this construction, the points P and K are

a pair of conjugate extra-axial points with respect to the

Fig. 171, c.—Combination of two thin lenses. Graphical method of de-

termining the positions of the first focal point (F) and principal point

(H) : Case when first lens is convex and second lens concave.

first lens; so that the construction really consists in locating

the object-point P which is imaged by the first lens in the

point K. This will help the student to remember the con-

struction.

In order to show that the construction is correct, let J

designate the point of intersection of the pair of straight

lines FP and LK. Then since JP and FP are corresponding

altitudes of the similar triangles PLK and PFiAi, we have:

JP =
L K

^ AiF2 = AiA2+A2F2 ^
c-/2

FP"FiArFiAi" FiAi /i

Now JP=JF+FP=KF2+FP =FP-/2 , and therefore:

FP-/2 c-/2

FP /i '

and if this equation is solved for FP, we find

:

FP
/1+/2-C

/,
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in agreement with the formula found above. Moreover , in

the similar triangles AiFP and AiF2K,

AiF=AxF2 .

FP ~F2K ;

and since AiF2 =c-/2 , F2K=/2 , FP=/, we find:

which is likewise in agreement with the formula found above.

Similarly, mark the positions of the secondary focal points

F/ and F2 ', and through F/ draw a straight line perpendic-

ular to the optical axis, and take on it a point O such that

Fi'O = F/Ai =//. Through O draw the straight line OR par-

allel to the axis, and through A2 a straight line perpendicular

to the axis; and let R designate the point where these two

lines intersect. Then if Q designates the point of intersec-

tion of the straight lines F2'R and A20, that is, if Q is the

image of O in the second lens, the secondary focal point F' of

the combination will be at the foot of the perpendicular

drawn from Q to the optical axis, and the secondary prin-

cipal point H' will lie on the axis at a distance F'H^F'Q.
This construction may be proved in a manner entirely an-

alogous to the proof given above.

130. Optical Constants of Gullstrand's Schematic Eye.—
As a further illustration of the use of the formulae for the

CORNEA ,
^^

,

AQUEOUS / / CORE \ \VITREOUS

"3 \ txA tic,

Fig. 172.—Schematic eye.

combination of two optical systems, let us apply them to

the calculations of the refracting power (F) of the human
eye, together with the positions of the principal points (H,H')
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and the focal points (F, F'). For this purpose we shall use

the data of Gullstrand's schematic eye (in its passive

state, accommodation entirely relaxed) which are given

in the third edition of Helmholtz's Handbuch der physiolo-

gischen Optik, Bd. I (Hamburg u. Leipzig, 1909), pages 300

and 301, as follows (see Fig. 172)

:

Indices of refraction:

Cornea n2 = 1.376

Aqueous and vitreous humors n 3 = n 7 = 1.336

Lens n4 = n 6 = 1 .386

Lens-core n 5 = 1.406

Position of ssurfaces:

mm.Posterior surface of cornea

:
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Hence, if Fn denotes the refracting power of the cornea-

system, where

Fi2=Fi+F2 — C1.F1.F2,

we find:

F12 = +43.053 dptr.

The positions of the principal points of the cornea-system

are given by the formulae:

AiHi2_ Ci.Fa A2Hi2
'

g.Fi
#

m ~ Fu '

n3 Fn '

whence we find:

A1H12 = - 0.0496 mm., AiHi2
' = - 0.0506 mm.

The lens-system is composed of four refracting surfaces.

The first two surfaces form the so-called anterior cortex and

the last two surfaces the posterior cortex. The refracting

power of the anterior surface of the lens is

:

ft.*=*.. +5 dptr.;

and that of the anterior surface of the lens-core is

:

F J*Zl** +2.528 dptr.
r 4

The reduced interval between these two surfaces is

A3A4
^
0.000546

C3 ~
ru

~
1.386 '

Hence, if F34 denotes the refracting power of the combina-

tion, that is, if

Fs^=F3+F4— C3.F3.F4,

we find: F34 =4-7.523 dptr.

If the principal points of the anterior cortex are designated

by H34, H 34', then

A3H34 C3.F4 A 4H 34
/

=
C3.F3

.

m F34
'

nh F3 4
'

whence we obtain:

AiH 34 = +3.777 mm., A1H34' = +3.778 mm.

so that the principal points of the anterior cortex are coin-

cident with each other,
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Proceeding in the same way with the posterior cortex, we

have:

F5
=^^-5

= +3.472 dptr., F 6
=^^-6

= +8.333 dptr.,
rb r&

_A 5A 6 _ 0.000635
.

C5 ~ n 6 1.386 '

and hence if

F66=F5+F6~C&.F5.F6)

we find : F b6 = + 1 1 .792 dptr.

Moreover, since

rib FbQ
'

rn Fb&

we have finally for the positions of the principal points of

the posterior cortex:

AiH 56 = +7.0202 mm., AiH 56
' = +7.0198 mm.

;

so that H 56 and H 56
' may also be regarded as coincident.

If the refracting power of the lens-system as a whole is

denoted by L, then

L =7^34+^56^5.^34-^56,

where

_H84H 56
/

__
0.0032422

.

S ~
rib ""1.406

and if P, P' designate the principal points of the lens-system,

then

B^jJF^ Hse'P' ^ 5.^34

7i3 L ni L
Accordingly, we find:

L= +19.110 dptr.;

AiP= +5.6780 mm., AiP' = +5.8070 mm.
Lastly, combining the cornea-system and the lens-system,

we obtain for the refracting power of the entire optical sys-

tem of the eye

:

F=Fl2+L-c.F 12.L,

where

==
Hi2

/P ^ 0.0057285
C ~ m 1.336 '
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Also,

Hi2H =cX P /H /

= _c.Fi2

m F m F '

where H, H' designate the positions of the principal points of

the eye. Thus, we find

:

F =+58.64 dptr.;

AiH= +1.348 mm., AiH' = +1.602 mm.
If the focal lengths of the eye are denoted by / and /', then,

since f= rii/F and /' = - n 7/F, we obtain

:

/= +17.055 mm., /' = -22.785 mm.
The focal points F, F' are located as follows

:

AiF = - 15.707 mm., AiF' = +24.387 mm.
In Gullstrand's schematic eye the length of the eyeball

is taken as 24 mm., and therefore the second focal point F'

is not on the retina but 0.387 mm. beyond it; so that the

schematic eye is not emmetropic but hypermetropic (see

§ 153) to the extent of 1 dptr.

131. Combination of Three Optical Systems.—It is fre-

quently the case, especially in problems connected with

physiological optics, that we desire to find the resultant of

three co-axial optical systems of known refracting powers

Fi9 Fi and Fs separated by given intervals ch c2 , where

Hi H2 Ho H3
Ci = , c2 = ,

the principal points of the component systems being desig-

nated by Hi, Hi'; H2 , H 2'; and H3 , H 3
'. The indices of re-

fraction of the first and last media of system I are denoted

by nit n2 ; °f system II by ti2 , ^3,' and of system III by n 3 ,
n 4 .

Here let us employ the symbol D to denote the refracting

power of the compound system (I +11), and the letters G, G'

to designate the positions of the principal points of this par-

tial combination. Evidently, according to the formulae

derived in § 126, we may write:

D=F 1+F2 -c 1.F1.F2 ;

HiG = c±F2 H2
/G^ c1.F1

Til D '
• 713 D
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Now let F denote the refracting power of the combination

of systems I, II and III, and let H, H' designate the posi-

tions of the principal points of this compound system. Then

if the reduced interval between (I +11) and III is denoted

by k, that is, if

G'H 3
k =

nz

then also

Since

we find:

F =D+Fz -k.D.F3 ,

GH k.F3 HS'K' k.D

m F ' m " F

Gr H3 Cj H2 H2 H 3

nz nz nz

k=
c1.F1+c2.D

D
If now these equations are combined so as to eliminate D

and k, the following system of formulae for the combination of

three optical systems will be obtained finally

:

F=Fi(l - c2.F3) +F2 (1 - c1.F1) (1 - c2F,) +F8 (1 - C1.F1)

;

HiH ci C2.F3-C1.F1
.

m 1-ci.Fi F(l-ci.Fi)'

H 3

/H /

= _ c2 c2.F3-c1.F1

7i4 I-C2.F3 F(1-C2.F3) '

In the special case when the compound system is symmet-

rical with respect to system II, that is, when n 3 = n2 and n± = n\

and c2 = ci = c and F3 =Fi, the formulae above will be simpli-

fied as follows:

F=(l-c.F0 (2Fi+F2 -c.Fi.F2),

HiH =HTV =
c

ni n\ 1 - c.Fi

'

Thus, if an optical system is symmetrical with respect to

a middle component part of the system, the principal

points (H, H') will be symmetrically placed, and their posi-

tions will be independent of the refracting power F2 of the
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middle system. These latter formulae should be compared

with the formulae for a " thick mirror" to be developed in

the following section.

132. " Thick Mirror."—The general formulae which have

been derived in this chapter are applicable also when
the centered system of spherical surfaces includes one or

more reflecting surfaces, provided that reflection is treated

as a special case of refraction, according to the method ex-

plained in § 75. Thus, for example, if the rays are reflected

at the kth surface of the system, we must put nk+1 = -nk ;

and, consequently, if the reflecting power of this surface is

denoted by Fk , we shall have Fk = nk/fk =nk/fk ,
in accord-

ance with the characteristic requirement that the focal

lengths of a spherical mirror are identical, that is, /=/'

(see §77).

A special case of much interest and practical importance

occurs when the last surface of the system acts as a mirror,

the rays of light arriving there being reflected back through

the system as so to emerge finally at the first surface into

the medium of index n\ where they originated. For ex-

ample, this happens always in the case of an ordinary glass

mirror which is silvered at the back. The rays return into

the air in front of a mirror of this kind after having twice

traversed the thickness of the glass, and the failure to take

account of the refractions from air to glass and from glass

to air is sometimes responsible for serious errors in the

measurement of the focal length of a glass mirror silvered

at the back. The image produced by rays which have been

partially reflected from the second surface of an ordinary

lens is often very disturbing, although the intensity of the

reflected fight is usually comparatively feeble unless the

second surface of the lens has been silvered.

The name "thick mirror" has been applied by Dr. Searle*

to any combination of centered spherical refracting surfaces

* G. F. C. Searle: The determination of the focal length of a thick

mirror. Proc. Cambr. Phil. Soc, xviii, Part iii, 1915, 115-126.
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wherein the rays are supposed to be reflected at the last sur-

face and to return through the system
#
in the opposite sense.

It may easily be shown that a " thick mirror" as thus de-

fined acts exactly like a single spherical reflecting surface

(or "thin mirror," as we may calhit, having in mind a cer-

tain analogy which exists here between lenses and mirrors),

whose vertex and center have perfectly definite and calcu-

lable positions depending on the constants of the "thick

mirror." This is proved by Dr. Searle in a simple manner

as follows

:

In Fig. 173 the system is represented as consisting of

three spherical surfaces, the first two forming a thick lens

LENS MIRROR

Fig. 173.—Diagram of "thick mirror" system.

and the last surface being a spherical mirror with its vertex

at a point A on the axis of the lens. Draw the straight line

QV parallel to the axis of the system to represent the path of

an incident ray; which after traversing the lens and being

reflected at the mirror will again emerge from the lens and

cross the axis at the secondary focal point (F') of the system.

The point V designates the point of intersection of the in-

cident ray QV and the corresponding emergent ray VF',

and hence this point must lie in the secondary principal

plane of the system (§ 119). Consequently, the foot of the

perpendicular let fall from V on to the axis will be the sec-

ondary principal point H'. But by the principle of the re-
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versibility of the light-path (§ 29), if the straight line F'V is

regarded as an incident ray, then VQ will be the path of the

corresponding emergent ray, and since in this case the emer-

gent ray is parallel to the axis, the corresponding incident

ray F'V must cross the axis at the primary focal point F,

so that the two focal points F and F' will be coincident.

Moreover, the point V must lie in the primary principal

plane, and hence the two principal planes are coincident.

But these are the characteristics of a spherical mirror, and

it is evident that the " thick mirror" is equivalent to a "thin

mirror" with its vertex at H (or IF) and its center at a point

K such that HK=2HF.
The four images of Puekinje are the catoptric images

formed in the eye by reflection at the anterior and posterior

surfaces of the cornea and the crystalline lens; which are of

fundamental importance in determining the curvatures and

positions of the refracting surfaces in the optical system of

the eye. The first image is produced by direct reflection at

the anterior surface of the cornea, but the optical systems

which give rise to the three other images are more or less

complicated. However, according to the above explanation,

each of these systems may be reduced to a single reflecting

surface of appropriate radius with its center at a certain

definite place to be ascertained by the conditions of the

problem. One of these cases will be investigated presently,

as soon as the formulae for a thick mirror have been devel-

oped.

The radius and positions of the vertex and center of the

equivalent "thin mirror" may easily be calculated by means

of the general formulae which were obtained in the preced-

ing section for a combination of three optical systems. Here

the first system (I) of refracting power F\ may be regarded

as composed of the entire lens-system lying in front of the

reflecting surface; while the mirror itself of reflecting power

F2 may be regarded as the second system (II). In this case

the third system (III) will be the lens-system reversed, and
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its refracting power will be the same as that of system I,

that is, Fz=F2 ; but the principal points H 3 and H3
' of system

III will coincide with the principal points HY and Hi, re-

spectively, of system I. Above all we must impose here

the conditions that

7i3 = —ri2=—n
f

, ft 4 = —fti=— ft,

where n denotes the index of refraction of the medium of

the object-space and n' denotes the index of refraction of-

the medium in contact with the reflecting surface. These

conditions take account of the fundamental fact that the

sense of propagation of the light is reversed by the mirror.

The principal points H2 , H2
' of the mirror coincide with each

other at its vertex which will be designated here by the

letter A'. If therefore Ci, Oi denote the reduced intervals

between the first system and the mirror and between the

mirror and the third system, we have

:

H/A' A'H 3 Hi'A'
Ci=—— , c2 = =——

,

n m n
and hence

ci = c2 = c, say.

Moreover, if the radius of the reflecting surface is denoted

2n'
by r', then F =——. Introducing these relations in the

general formulae for the combination of three optical sys-

tems (§ 131), we obtain the following expressions for finding

the reflecting power (Fu) and the positions of the principal

points H13, Hi3
' of a "thick mirror":

Fi 3 = (l-c.F 1) (2F 1+F2 -c.F1.F2)

= a-c.F1){2F1 -'^-(l-c.F1)};

H,H 13 H^,/ c

ft ft 1 — c.Fi

Accordingly, we see not only that the principal points of

a " thick mirror" are coincident with each other, but that

the position of the vertex Hi 3 of the equivalent "thin mirror
"

is entirely independent of the power F2 or the curvature of
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the actual mirror. The position of Hi3 does depend on the

position of the vertex A' of the actual mirror; but for any

mirror placed at A' the vertex of the equivalent " thin mir-

ror" will be at the same point Hi3 . It may be noted that

the formula for the reflecting power of a " thick mirror" is

identical in form with the expression for the refracting power

of a compound system which is symmetric with respect to

a middle member (see end of § 131).

If the center of the equivalent "thin mirror" is designated

by K, then its radius will be

2n

and hence

HiK_ c.F2
-2

n 2F1+F2-C.F1.F2'

If the surface of the mirror (II) is plane, then F2 =0, and

in this case the formulae for the equivalent "thin mirror"

become

:

F1,=2F1(l-c.F1),
Mi!=Sl5il = c H

1
K= _1

n n 1-c.Fi n Fi

The distinguishing characteristic of the imagery in a

spherical mirror is that a pair of conjugate axial points M, M'
is harmonically separated by the vertex H and the center K
of the mirror, that is, (KHMM') = -1(§ 68). An interest-

ing special case occurs when one of the points K or H is at

infinity; for in that case the reflecting power of the mirror

vanishes (F=0). When the center of the mirror is at an

infinite distance from it, the mirror lies midway between

object and image (MH = HM') and the lateral magnifica-

tion is equal to +1 (y' = y); which is the case of an ordinary

plane mirror. But, on the other hand, if the mirror itself

is at an infinite distance, while the center K remains in the

region of finite space, it is the center of the mirror in this

case that is always midway between object and image, that

is, MK = KM', and now the lateral magnification will be

equal to — 1, that is, the image will be of the same size as
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the object but inverted {y
f =—y). Both of these special

cases may be realized by a "thick mirror"; for the condi-

tion that the reflecting power of the equivalent "thin mirror"

shall vanish (Fu=0) requires that either

2^1+^2-0.^1.^2=0,

or

1-0.^1=0.

In the former case the center of the mirror (K) is at infinity,

and in the latter case the vertex of the mirror (Hi3) is at

infinity. If therefore the distance between the anterior lens-

system and the final reflecting surface of a "thick mirror"

is c = l/Fh the system will produce an inverted image of the

same size as the object, no matter where the object is placed.

As an illustration of the use of the formulae for a "thick

mirror," consider the optical system in the eye which pro-

duces the third of the so-called Purkinje images, to which

allusion was made earlier in this section. The third image is

formed by rays which coming from an external source enter

the eye, and after having traversed the cornea system and

the aqueous humor are reflected at the anterior surface of the

crystalline lens; whence returning through the same media

in the reverse order they issue again into the air. In order

to find the "thin mirror" which is equivalent to this system,

we shall employ the constants of Gullstrand's schematic

eye as given in § 130. The vertex of the anterior surface of

the cornea will be designated by A x and the principal points

of the cornea-system by Hi and H/. We found that AiHi =

-0.0496 mm. and AiH/= -0.0506 mm.; also, Fi = +43.05

dptr., where F\ denotes the refracting power of the cornea-

system. The reflecting power of the anterior surface of the

lens is given by the formula:

r 3

where n3 = 1.336 and r3 = +0.010 m.; accordingly, we find:

F2 = ~ 267.2 dptr.
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The reduced distance between the cornea-system and the

first surface of the lens is

:

H/A3
c = ,

n z

where A3 designates the vertex of this surface; AiA3 =

0.00036 m. Thus, we obtain

:

c= 0.0027325.

Substituting these numerical values in the system of for-

mulae for a "thick mirror, " we find for the reflecting power of

the equivalent "thin mirror" in this case:

F13
=~ 132.062 dptr.;

and for the positions of its vertex Hi 3 and its center K:

HiH13 = +3.0968 mm., HiK= +18.2412 mm.
Accordingly, the system that produces the third of the

Purkinje images in Gullstrand's passive schematic eye

is equivalent to a convex mirror of radius 15.14 mm. with

its vertex at a distance of 3.047 mm. from the vertex of the

anterior surface of the cornea.

Formulas for calculating the reflecting power Fu of a

"thick mirror" may also be obtained in terms of different

data from those employed in the expressions which have

been deduced above. Suppose, for example, that we are

given the refracting power (F) of a centered system of

spherical refracting surfaces, the positions of the principal

points of the system (H, H')> and the indices of refraction

of the first and last media (n, n'); together with the radius

(r') and the position of the vertex (A') of the last surface;

and that it is required to determine in terms of these data the

characteristics of the imagery produced by light which pro-

ceeding from the object-space through the system is partially

reflected at the last surface and again partially refracted at

the first surface into the original medium. In order to solve

this problem in the simplest way, it is convenient to employ

a mathematical artifice which will be found to be serviceable

in other optical problems. The refracting power of an in-

finitely thin concentric lens is equal to zero, and it is easy to
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show that such a lens may be inserted anywhere in an opti-

cal system without affecting at all the resultant imagery

(see § 90). Let us suppose, therefore, that the given optical

system is terminated by an infinitely thin layer of material of

index n', bounded by two concentric spherical surfaces, the

first of which coincides with the last surface of the given

system. Under these circumstances the resultant system may
be considered as compounded of three component systems,

namely, (1) the given system of refracting power Fi = F,

2n'
(2) a mirror of reflecting power F2 = , and (3) the given

system reversed (F3 = F). Hence, if

H'A'

the following formulae will be obtained in the same way as

above

:

F^il-c.F)

HH13 HHi,/

2F- £5.(1- c.F)

n n l-c.F
'

which are similar in form to the previous expressions, but

c here has a different meaning and F denotes the refracting

power of the entire lens-system and not merely of that part

of the system which is in front of the reflecting surface.

A problem of considerable interest, especially in connec-

tion with the optical system of the human eye, is the inves-

tigation of the procedure of the light which after being par-

tially reflected at the last surface of the system (as in the

case above) is also partially reflected at the first surface, so

that it emerges finally into the last medium of index n' . The

imagery in this case may be determined by adding a second

infinitely thin concentric lens, which is assumed to be made
of material of index n and whose second surface coincides

with that of the first surface of the system. Accordingly,

now we shall have five systems in all, namely, the first three

systems whose reflecting power Fu was obtained above,
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a fourth system consisting of the first surface of the lens-

2n
system acting as a mirror, whose reflecting power is F4 =— ,

r

where r denotes the radius of this surface, and a fifth system

of refracting power F& = F. The entire system, whose refract-

ing power may be denoted by Fu, and whose principal points

may be designated by H i5 , Hi 5 ', may, therefore, be considered

as compounded of 3 systems of powers Fu, 2n/r and F, sep-

arated by the intervals Ci and c2 , where (if A designates the

vertex of the first surface of the lens-system)

AH 13 AH
ci= » c2 = .

n n

Accordingly, by substituting Fu in place of Fh 2n/r in place

of F2 , and F in place of F3 in the formulae of § 131 for the

combination of three optical systems, we obtain here:

Fn=Fu (1- C2.F)+^ (I-C1.F13) (l-c.F)+F (1-d.Fu);

H13H15 d c2.F-c1.Fu
.

n 1-ci.Fn Fu(l-ci.Fi3)
'

ITHil = ___C2_ c^.F-d.Fu

n' 1-C2.F
+
Fn(l-C2.F)'

Being given the magnitudes denoted by n, n', r, r', and F
and the positions of the points designated by A, A' and H, H',

and having found by means of the previous formulae the

magnitude denoted by Fu and the position of the point

designated by Hi 3 (or Hi/), we can introduce these data and
results in the expressions above and thus determine the re-

fracting power Fit and the distances AH15, A'His' of the prin-

cipal points H15, Hi 5
' from the vertices A, A' of the first and

last surfaces, respectively.

PROBLEMS

1. Find the refracting power and the positions of the focal

points and principal points of each of the following glass

lenses surrounded by air (n = l, n' = 1.5); and make an ac-
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curate sketch of each lens, marking the positions of the

points mentioned.

(a) Double convex lens of radii 10 cm. and 15 cm. and of

thickness 3 cm.

(&) Double concave lens with same data as above.

(c) Meniscus lens for which ri=+5cm., r2 =+10cm.,
and d=+3 cm.

(d) Meniscus lens for which ri=+6 cm., r2 =+3 cm., and
d=+2.52 cm.

(e) A plano-convex lens with its curved surface, of radius

5 cm., turned towards the incident light; d = +0.5 cm.

(/) Symmetric convex lens, the radius of each surface

being 5 cm.; d= +0.5 cm.

(g) Symmetric concave lens with same data as above.

(h) A meniscus lens with radii ri=+5cm., r2 =+8cm.,
and thickness d=+0.5 cm.

(i) A meniscus lens with radii ri=+8cm., r2 = +5cm.,
and thickness d= +0.5 cm.

(j) A meniscus lens with radii ri = +8cm., r2 =+7cm.,
and thickness d= +3 cm.

(k) A plano-convex lens with its curved surface, of radius

5 cm., turned towards the incident light; d=+5 cm.

Answers

:

F
in clptr.
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same medium (index n) on both sides, show that we have

the following sj^stem of formulae:

N=(
:
n , -n)

\
(n'-n) d-2n'.r

}

;

„ N AiF A2F' r\
( , w ,F=——r-

; =— =——\ (n'—n) d—n'
n'r* n n N

{

AiH__A2H /

_ _ n'-n ,

n n N
3. If the first face of a lens is plane, and if the radius of

the curved face is denoted by r, show that

r n n

AiF_ r d
m

A2F r

= r

n n'—n n' ' n n'—n

'

And if the second face of the lens is plane,

„ n'—n . TT . A2H' dF= ; AiH=0; ——=— -.; etc.
r n n

If either face of a lens is plane, the refracting power of the

lens is equal to that of the curved surface and is entirely in-

dependent of the thickness of the lens; and, moreover, one

of the principal points coincides with the vertex of the curved

face.

4. If the radii n and r2 of the two surfaces of a lens are

both positive, and if r2 is greater than n, show that the lens

is convergent, provided the lens-medium is more highly re-

fracting than the surrounding medium.

5. A "lens of zero-curvature" is a crescent-shaped menis-

cus for which r2 = ri=r. Show that such a lens is always

convergent unless it is infinitely thin; and that this is the

case whether the lens-medium is more or less highly refract-

ing than the surrounding medium.

6. Show that a meniscus lens for which

ri>r2>0 and n'>n

is divergent provided its thickness is less than

n'(ri—r2)

n'—n
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7. Show that in any meniscus lens surrounded by air at

least one of the principal points must lie outside the lens.

8. A so-called concentric lens is one for which the centers

of curvature of the two faces are coincident (d = r\— r2). It

may be double convex or meniscus. Show that the refract-

ing power of a concentric lens surrounded by the same me-
dium on both sides is

w _ n(n'-n) (l _1_\
n' \n rj'

and that the principal points coincide at the common center

of the two surfaces.

9. Find the refracting power and the positions of the focal

points and principal points of each of the following concentric

glass lenses (ft' = 1.5) surrounded by air (ft = l); and draw

accurate sketch of each lens showing the positions of the

points named

:

(a) Double convex lens with radii n. = + 10 cm., r2 = — 2 cm.

(b) Meniscus lens with radii n = +5 cm., r2 = +2 cm.

Ans. (a) F=+20 dptr., AiF=+5cm., A2F=+3 cm.,

AiH = +10 cm., A2H' = -2 cm.; (b) F=-10 dptr., A]F =

+15 cm., A2F'=-8 cm., AiH = +5 cm., A2H'=+2 cm.

10. Find the focal length and the positions of the prin-

cipal points of a concentric glass lens surrounded by air

(ft = l, n' = 1.5), with radii ri=+8 cm., r2 = +5 cm.

Ans. /=—40 cm., AiH = +8 cm., A2H'=+5 cm.

11. What is the refracting power of a concentric glass

meniscus lens surrounded by air (n = l, ft' = 1.5), the radii

being 5 cm. and 3 cm.? Ans. F= — 4.44 dptr.

12. The radius of the second surface of a concentric glass

lens surrounded by air (ft = l, ft' = 1.5) is +3 cm., and its re-

fracting power is —2 dptr. Determine its thickness.

Ans. 6.59 mm. If it were not too heavy, this would

be a fairly good form of spectacle glass for a near-sighted

person.

13. If the two principal points of a lens surrounded by

the same medium on both sides coincide with each other at
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a point midway between the two vertices, what is the form

of the lens? Ans. A solid sphere.

14. The refracting power of a symmetric glass lens sur-

rounded by air (n = l, w'= 1.5) is +10 dptr., and its thick-

ness is 0.5 cm. Determine the radius of the first surface.

Ans. +9.916 cm.

15. A solid sphere is a symmetric concentric lens. If the

radius is denoted by r (r = AiC), show that we have the fol-

lowing system of formulae for a solid sphere surrounded by

the same medium (ri) on both sides

:

2n(n'-n)
. H'A -r • A,F' FA, S2n~n'>

16. If the plane surface of a glass hemisphere, of index n'

and surrounded on both sides by a medium of index n, is

turned towards the incident light, and if r denotes the radius

of the curved surface, show that

n'—n . TT n.r . TT , _ A „ n2
r

F=- , AiH= T , A2H' = 0, AiF =
n

A2F'

n'in' -n)
'

n.r

n'-n

17. An object is placed in front of the plane surface of

a glass hemisphere, of index 1.5 and radius 3 inches, at a

distance of 10 inches from this surface. Find the position,

nature and size of the image.

Ans. A real, inverted image, of same size as object, will

be formed at a distance of 25 inches from the object.

18. What is the refracting power of a glass sphere (n' =

1.5), 16| cm. in diameter, (a) surrounded by air (w=l),

and (b) surrounded by water (n=|)?

Ans. (a) +8 dptr.; (b) +3| dptr.

19. The radius of each surface of a symmetric convex

glass lens (n' = 1.5) is 10 cm., and the thickness of the lens

is 5 mm. What is its refracting power (a) when the thick-

ness is neglected, and (6) when the thickness is taken into

account? Ans. (a) +10 dptr.; (b) +9|| dptr.

20. The radii of a convex meniscus glass lens (n' = 1.5)
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surrounded by air (n = l) are 2.5 cm. and 5 cm. (a) If the

lens is infinitely thin, what is its refracting power? (6) If

the thickness of the lens is 1 cm., what is its refracting power?

Ans. (a)F=+10dptr.; (6) F=+ll£ dptr.

21. Determine the focal length (/) of a glass lens of in-

dex 1.5 surrounded by air for which n=+10, r2 =+9,

(1) when thickness d = 0, and (2) when thickness d= +1.

Ans. (1) /=-180; (2) f=-270.
22. A plane object is placed at right angles to the axis of

a plano-convex lens at a distance of 8.77 cm. in front of its

curved surface. The lens is made of glass of index 1.52,

and the thickness of the lens is 0.5 cm. The radius of the

curved surface is 4.56 cm. Show that the image will be at

infinity, and that, in order to see distinctly the image of a

point in the object which is 2 cm. from the axis, an eye be-

hind the lens must look in a direction inclined to the axis

of the lens at an angle of nearly 12° 51'.

23. The refracting power of a meniscus spectacle glass is

+6 dptr., and r2 =2rh d = 6 mm. The index of refraction

is 1.5. Find the radii n and r2 and the vertex refrac-

tion V.

Ans. ri = +4.36 cm., r2 = +8.72 cm., 7= +6.29 dptr.

24. The thickness of a spectacle glass is 4.75 mm., and

the index of refraction is 1.5. The refracting power of the

first surface is +15.4 dptr., and that of the second surface

is —9.1 dptr. Find the refracting power of the lens and its

vertex refraction. Ans. F= +6.74 dptr.; V =+7.09 dptr.

25. A paraxial ray is incident on the cornea of Gull-

strand's schematic eye (§ 130) in a direction parallel to the

axis. Trace the path of this ray through the eye and de-

termine the position of the secondary focal point F' (see

calculation-scheme, § 181) ; and calculate the focal lengths

/, f according to the formulae derived in problem No. 17

at the end of Chapter X.

Ans. Distance of F' from the vertex of the cornea is

24.387 mm.; /= +17.055 mm., f= -22.785 mm.
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26. The reduced thickness of a symmetric spectacle glass

is denoted by c. If V denotes its vertex refraction, show

that

r V(Vl+c 2.V 2-c.V)

?
'

27. A hollow globe of glass is filled with water. The di-

ameter of the water sphere is 8.5 inches and the thickness of

the glass shell is 0.25 inch. Show -that a narrow beam of

parallel rays directed towards the center of the globe will be

converged to a point 4.68 inches from the outside surface,

the indices of refraction of glass and water being # and

-|, respectively.

28. What is the focal length of a combination of two thin

convex lenses, each of focal length /, placed at a distance

apart equal to 2//3? Ans. 3//4.

29. An optical system is composed of two thin convex

lenses of refracting powers +10 dptr. and +6§ dptr.,

the stronger lens being towards the incident light. Find

the refracting power of the combination and the positions

of the principal points and focal points when the dis-

tance between the lenses is: (a) 5 cm.; (b) 25 cm.; and

(c) 40 cm.

Ans. (a) Convergent system: F = 1S~ dptr.; AiH =

+2.5 cm. ; A2H' = - 3.75 cm. ; AiF = - 5 cm. ; A2F' = +3.75 cm.

;

(b) Telescopic system: F = 0; focal and principal points

all at infinity; (c) Divergent system: F= — 10 dptr.; AiH =

-26| cm.; A2H , = +40 cm.; AiF=-16f cm.; A2F' =
+30 cm.

30. An optical system is composed of two thin lenses,

namely, a front concave lens of power — 10 dptr. and a rear

convex lens of power +6| dptr. Find the refracting power

of the combination and the positions of the focal points and

principal points, when the interval between the lenses is:

(a) 2.5 cm.; (b) 5 cm.; (c) 6.25 cm.; (d) 20 cm.

Ans. (a) Divergent system : F = — 1| dptr. ; AiH = — 10 cm.

;

A2H'=-15 cm.; AiF =+50 cm.; A2F'=-75 cm.; (6) Tele-
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scopic system: F=0, focal and principal points all at

infinity; (c) ^=+| dptr.; AiH = +50 cm.; A2H'=+75 cm.;

AiF=— 70 cm.; A2F' = +195 cm.; (d) Convergent system:

^=+10 dptr.; AiH = +13^ cm.; A2H' = +20 cm.; AiF =

-f3^cm.;A2F'= +30cm.
31. Two thin convex lenses of focal lengths /i and /2 are

separated by an interval equal to 2/2 . If /i = 3/2 , what is

the focal length of the combination?

Ans. Convergent system of focal length 3/2/2.

32. Two lenses, one convex and the other concave, are

separated by an interval 2a. The convex lens is the front

lens, and its focal length is a, while that of the concave lens

is —a. Find the focal length of the combination and the

positions of the principal points and focal points.

Ans. /=a/2; AiH =A2H' = -a; AiF =3A2F' = -3a/2.

33. Where are the principal planes of a system of two thin

convex lenses of focal lengths 2 inches and 6 inches, separated

by an interval of 4 inches?

Ans. The principal planes coincide with the focal planes

of the stronger lens.

34. The objective of a compound microscope may be re-

garded as a thin convex lens of focal length 0.5. inch. The
ocular may also be regarded as a thin convex lens of focal

length 1 inch. The distance between the two lenses is 6

inches. Where must an object be placed in order that its

image may be seen distinctly by a person whose distance of

distinct vision is 8 inches?

Ans. If inch in front of the objective.

35. The focal lengths of the objective and ocular of a com-

pound microscope are 0.5 inch and 1 inch, respectively. If

the distance of distinct vision is 12 inches, find the distance

between the objective and ocular when the object viewed is

0.75 inch from the objective. Ans. 2.42 inches.

36. A thin convex lens, of focal length 5 inches, is placed

midway between two thin concave lenses each of focal length

10 inches. The distance between the first lens and the second
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is 5 inches. Find the focal length of the system and the po-

sitions of the principal points.

Ans. /=+6| inches; the principal points are 3^- inches

from the outside lenses.

37. In the preceding problem, suppose that the two
outside lenses are concave, everything else remaining the

same.

Ans. /=+6| inches. The principal points are on op-

posite sides of the middle lens and If- inches from it.

38. A thin convex lens, of focal length 10 inches, is placed

in front of a concave mirror of focal length 5 inches, the dis-

tance between them being 5 inches. The light traverses the

lens, is reflected at the mirror, and again passes through the

lens. Find the focal length of this so-called " thick mirror "

and the positions of the principal points.

Ans. /=+6§ inches; the principal points coincide with

each other at a point 5 inches behind the vertex of the mirror.

39. In the preceding problem, suppose that the lens is

concave, everything else remaining the same.

Ans. /= +6| inches; the principal points coincide with

each other at a point between the lens and the mirror and

3| inches from the former.

40. In front of each of the systems described in Nos. 35,

36, 37 and 38, an object, one inch high, is placed at a distance

of 5 inches from the first member of the system. Find the

position, size and nature of the image in each case.

Ans. In No. 35: A real, inverted image, 2 inches beyond

the third lens and 0.8 in. high. In No. 36: A real, inverted

image, 30 inches beyond the third lens and 4 inches high.

In No. 37: A real, inverted image, 2 inches in front of the

lens and 0.8 in. high. In No. 38: A real, inverted image,

30 inches in front of the lens and 4 inches high.

41. The center of a concave mirror, of radius r, coincides

with the optical center of a thin lens, of focal length /, and

the axes of lens and mirror are in the same straight line. The
light traverses the lens, is reflected at the mirror, and again
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traverses the lens. Show that the system is equivalent to a

thin mirror of radius r.f/(r+f), with its center at the same

place as the center of the given mirror.

42. A centered system of lenses (I) is placed in front of

a spherical mirror (II), and the whole constitutes a "thick

mirror/' as explained in § 132. Show that the vertex A and

the center C of the actual mirror are the images of the vertex

H and the center K, respectively, of the equivalent "thin

mirror/' which are produced by the lens-system I in the

medium of index n2 between systems I and II.

43. A "thick mirror" consists of a thin lens of focal length

/i and a spherical mirror of focal length /2 placed co-axially

so that the focal point of the mirror coincides with the opti-

cal center Ai of the thin lens. Show that the focal length of

the equivalent "thin mirror" is

t /l-/2 .

Si-ft'

and that the positions of the vertex H and the center K are

given by the following expressions

:

AlH =-A4, A 1K=-/^4.
/l-/2

'

/1+/2

Does it make any difference whether the lens is convex or

concave?

44. At each of the focal points of a thin convex lens of

focal length /2 is placed a thin lens of focal length /1. Find

the focal length of the combination of the three lenses and

the positions of the principal points. Does it make any dif-

ference whether the two equal outside lenses are convex or

concave?

/l/2 . A XT XT/ A /l-/2Ans./=-^ ; AiH = H'A 3
=-

Jl—fl /1-/2

45. A thin convex lens of focal length 10 cm. is placed in

front of a plane mirror at a distance of 8 cm. from it. Find

the radius of the equivalent "thin mirror" and the position

of its vertex H.



394 Mirrors, Prisms and Lenses [Ch. XI

Ans. The equivalent "thin mirror" is a concave mirror of

radius 50 cm. with its vertex 32 cm. behind the plane mirror.

46. The axes of three thin convex lenses are all in the

same straight line, the interval between the first and second

lenses being one inch and the interval between the second

and third lenses being half an inch. The focal lengths of the

first, second and third lenses are f, -^ and f inch, re-

spectively. A plane object is placed at right angles to the

axis of the lens-system; show that an inverted image of the

same size as the object will be formed in the plane of the

object.

47. A plano-concave flint glass lens of index 1.618 is ce-

mented to a double convex crown glass lens of index 1.523.

The radii and thicknesses are as follows : r\= oo , r<i =

+50.419 mm., r3 = — 74.320 mm.; c?i = +2.15 mm., d2 =

+4.65 mm. Find the focal length of the combination and

the positions of the principal points.

Ans. /= +192.552 mm.; distances of principal points from

the plane surface, +5.466 and +7.908 mm.
48. A plano-concave flint glass lens of index 1.618 is ce-

mented to a double convex crown glass lens of index 1.523.

The radii and thicknesses are as follows: r\= +22.00 mm.,

r2 =-19.65 mm., r3 = oo ; di=+2.60 mm., d2 = +2.00 mm.
Find the focal length of the combination and the positions of

the principal points.

Ans. /= +52.26 mm.; distances of principal points from

plane surface, —5.03 and —3.36 mm.
49. The radii and thickness of a symmetric double convex

lens are 10 cm. and 1 cm., respectively. The lens is made of

glass of index 1.5 and surrounded by air of index unity.

A portion of the light which enters the lens will be reflected

at the second surface and partially refracted at the first

surface from glass back into the air. Find the radius, re-

flecting power and position of the vertex of the equivalent

"thin mirror."

Ans. Concave mirror of radius —53.050 mm., reflecting
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power +37.7 dptr., with its vertex +6.90 mm. from the ver-

tex of the first face of the lens.

50. In the case of the lens in the preceding problem, as-

sume that the light is reflected internally twice in succession

and issues finally at the second face into the air. Find the

refracting power and the positions of the principal points

for the imagery produced by these rays.

Ans. Refracting power, +53.08 dptr.; distances of prin-

cipal points from vertex of first surface of the lens, +10.94

and — 0.94 mm.
51. In Gullstrand's schematic eye in its state of maxi-

mum accommodation the crystalline lens consists of an outer

symmetric double convex lens of index ^4 = n6 = 1.386 (see

§ 130), enclosing an inner symmetric double convex "core"

lens of index n 5 = 1.406; the inner portion being symmetri-

cally placed with respect to the surrounding outer part.

The radii of the surfaces are as follows

:

Outer portion: r3=A 3C3 = +5.3333 mm.= -r6= C 6A 6 ;

Inner portion: r4=A 4C 4 = +2.6550 mm.= -r5 =C 5A5 .

Moreover,

A 3A4 = A3C5 =A 5A 6 = C4A 6 = 0.6725 mm.;
A4A5 = C5C4 = A4C4 = C5A5 = 2.6550 mm.

The entire lens is surrounded by a medium of index n3 =

717 = 1.336. Show (1) that the refracting power of the inner

portion or "core" lens is F4 b = +14.959 dptr., and that its

principal points are 1.9905 mm. from the anterior and pos-

terior surfaces. Moreover, employing the formulae of § 131,

show (2) that the refracting power of the entire lens in case

of maximum accommodation is F3Q= +33.056 dptr. and that

A 3H36=H 36'A 6
= +1.9449 mm.

52. Using the data of the preceding problem, find the

refracting power (F) and the positions of the principal points

(H, H') of Gullstrand's schematic eye in its state of maxi-

mum accommodation: being given, according to the results

of § 130, that the refracting power of the cornea system is

Fn =43.053 dptr. and that AiHi2
= -0.0496 mm., AiH'i2 =



396 Mirrors, Prisms and Lenses [Ch. XI

— 0.0506 mm., aifld also that for maximum accommodation

AiA 3 =+3.2 mm.
Ans. ^=+70.575 dptr.; AiH = + 1.772 mm.; AiH^

+2.086 mm.
53. Two thin lenses of focal lengths /i and/2 are placed on

the same axis with the second focal point (F/) of the first

lens coincident with the first focal point (F2 ) of the second

lens, so as to form an afocal or telescopic system. Show
that the lateral magnification is constant and equal to

— /2//1, and that the angular magnification is likewise con-

stant and equal to the reciprocal of the lateral magnification.

54. If (as in Huygens's ocular) two thin lenses are placed

on the same axis with their second focal points in coincidence,

show that the second focal point of the combination is mid-

way between this common focal point and the second lens,

and that the deviation produced by the second lens is twice

that produced by the first (assuming that the angles are

small)

.



CHAPTER XII

APERTURE AND FIELD OF OPTICAL SYSTEM

133. Limitation of Ray-Bundles by Diaphragms or Stops.

—The geometrical theory of optical imagery which has been

developed in Chapter X was based on the assumption of

punctual correspondence between object-space and image-

space, whereby each point of the object is reproduced by
one point, and by one point only, in the image; and on this

hypothesis simple relations in the form of the so-called

image-equations (§ 123) were obtained for determining the

position and size of the image in terms of the focal lengths

of the optical system. When we attempted to realize the

imagery expressed by these equations, we were obliged to

confine ourselves to the so-called paraxial rays comprised

within the narrow cylindrical region immediately surround-

ing the axis of symmetry or optical axis of the centered sys-

tem of spherical refracting or reflecting surfaces. Based on

the same assumptions, certain rules were given for con-

structing the image-point Q' corresponding to a given object-

point Q. For example, a pair of straight lines was drawn

through Q (Fig. 174), one parallel to the optical axis and

meeting the second principal plane of the system in a point

V, and the other going through the primary focal point F
and meeting the first principal plane in a point W. The
required point Q' was shown to lie at the point of intersec-

tion of the straight line V'Q', drawn through the second

focal point F', with the straight line WQ' drawn parallel to

the axis. The position of the point Q' having been located,

the problem was considered as solved, and we were not par-

ticularly concerned with inquiring whether the straight

lines used in the construction represented the paths of ac-

397
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tual rays that formed the image at Q\ As a matter of fact,

the pair of geometrical lines which is employed here will

generally not belong to the bundle of optical rays by which

the imagery is actually produced; and a glance at the dia-

gram will show how the diameter of the lens and the size of

Fig. 174.—Effective rays as distinguished from rays used in making geo-

metrical constructions.

the object control the selection of the rays that are really

effective in producing the image.

In Chapter 1 attention was called to the fact that every

optical instrument is provided with some means of cutting

out such portions of a bundle of rays as for one reason or

another are not desirable; which is usually accomplished,

as has been explained, by interposing in the paths of the

rays at some convenient place a plane opaque screen at

right angles to the axis containing a circular aperture with

its center on the axis. There may, indeed, be several such

diaphragms or stops disposed at various places along the

axis of the instrument. A perforated screen of this kind is

called a front stop, a rear stop or an interior stop, according

as it lies in front of, behind or within the system, respect-

ively. The rims and fastenings of the lenses act in the same

way as the diaphragms to limit the ray-bundles. The stops

have various duties to perform, their chief functions being
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to cut off the view of indistinct parts of the image (limita-

tion of the field of view) , to cut out such rays as would tend

to mar the perfection of that part of the image which is to

be inspected (limitation of the aperture of the system), and,

finally, to nullify injurious reflections from the sides of the

tube or other parts of the instrument.

134. The Aperture-Stop and the Pupils of the System.—
To an eye looking into the instrument from the side of the

object, a front stop (which may be the rim of the first lens

of the system) will be the only one that will be visible di-

rectly. Any other stop or lens-rim will be seen only by means

of the real or virtual image of it that is cast by that part of

the optical system which is between it and the eye. Simi-

larly, if the eye is directed towards the instrument from the

image-side, an interior stop or a front stop may be seen by
means of the image of it that is produced by the part of the

system that lies between it and the eye. Now these impal-

pable stop-images, whether visible or not, are just as effect-

ive in cutting out the rays as if they were actual material

stops; because, obviously, any ray that goes through an

actual stop must necessarily pass either really or virtually

through the corresponding point of the stop-image; whereas

a ray that is obstructed by a stop will not go through the

opening in the stop-image.

That one of the stops which by virtue of its size and po-

sition with respect to the radiating object is most effective

in cutting out the rays is distinguished as the aperture-stop

of the system (§ 11), and in order to determine which of the

several stops performs this office, it is necessary, first of all,

to assign the position of the axial object-point M, without

which the aperture of the system can have no meaning. Ac-

cordingly, we must suppose that the instrument is focused

on some selected point M on the axis, which is reproduced

by an image at the conjugate point M'. The transversal

planes at right angles to the axis at M and M' will be a pair

of conjugate planes, for it is assumed here that the imagery
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is ideal and of the same character as that produced by par-

axial rays. Now this pair of conjugate planes plays a very

important role in the theory of an optical instrument, so

that hereafter we shall refer to the object-plane as the focus-

plane (or the plane which is in focus on the screen) and to

the conjugate plane in the image-space as the screen-plane.

Now if the eye is supposed to be placed on the axis at the

point M and directed towards the instrument, the stop or

stop-image whose aperture subtends the smallest angle at M
is called the entrance-pupil of the system. All the effective

rays (§11) in the object-space must be directed towards

points which He within the circumference of the circular

opening of the entrance-pupil. In general, the entrance-

pupil is the image of the aperture-stop as seen by looking into

the instrument in the direction of the light coming from the

object; but if the aperture-stop is a front stop, it will also

be the entrance-pupil.

On the other hand, when the eye is placed on the axis at

the point M' so as to look into the instrument through the

other end, the stop or stop-image which subtends the smallest

angle at M' is called the exit-pupil, and all the effective rays

when they emerge from the instrument must go, really or

virtually, through the opening of the exit-pupil. In this

statement it is tacitly assumed that M' is a real image of M;
otherwise, it would not be possible for the eye placed at M'
to look into the instrument through the end from which the

rays emerge. But in any case the exit-pupil is the stop or

stop-image which subtends the smallest angle at M'. Gen-

erally, the exit-pupil will be the image of the aperture-stop

as seen by looking into the instrument from the image-side;

but if the aperture-stop is a rear stop, it will be itself the

exit-pupil.

Since the effective rays enter the system through the

entrance-pupil in the object-space and leave it through the

exit-pupil in the image-space, it is evident that the exit-

pupil is the image of the entrance-pupil, so that the pupil-
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centers, designated 03- and 0', are a pair of conjugate axial

points with respect to the entire system.

The apertures of the ray-bundles in the object-space are

determined by the entrance-pupil of the system; and the

exit-pupil has a similar office in the image-space. Each of

the pupils is the common base of the cones of effective rays

in the region to which it belongs.

135. Illustrations.—The name "pupil" applied to these

apertures by Abbe was suggested by an analogy with the

optical system of the eye. The pupil of the eye is the con-

tractile aperture of the colored iris, the image of which

produced by the cornea and the aqueous humor is the en-

trance-pupil of the eye corresponding to what is popularly

called the " black of the eye," because it looks black on the

dark background of the posterior chamber of the eye. Since

the center O of the entrance-pupil is the image of the center

K of the iris-opening formed by rays that are refracted from

the aqueous humor through the cornea into the air, then,

by the principle of the reversibility of the light-path, we
may also regard K as the image of O formed by rays which

are refracted from air (n = l) through the cornea into the

aqueous humor (n' = 1.336). The apparent place of the eye-

pupil varies slightly in different individuals and in the same

individual at different ages. If we assume that the point O
is 3.03 mm. from the vertex (A) of the cornea, that is, if we
put u = 0.00303 m., then U = n/u = 330 dptr. And if we take

the refracting power of the cornea asF = 42 dptr. (§ 130),

then, since U'=U+F, we find U' = 372 dptr. and consequently

u' =AK = n'/U' = 0.0036 m.; so that with these data the

plane of the iris is found to be at a distance of 3.6 mm. from

the vertex of the cornea. Thus we see that the entrance-

pupil of the eye is very nearly 0.6 mm. in front of the iris.

As a simple illustration of these principles, consider an

optical system which consists of an infinitely thin convex

lens, with a stop placed a little in front of it. In the dia-

gram (Fig. 175) the straight line DG perpendicular to the
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axis of the lens represents the diameter of the lens which

lies in the meridian plane of the paper. The diameter of

the stop-opening is shown by the straight line BC parallel

to DG. The centers of the lens and stop are designated by

Screen
Plovxc

Exit Pupil

Fig. 175.—Optical system composed of thin convex lens with front

stop.

A and K, respectively. The position of the focus-plane is

determined by the axial object-point M, which in the figure

is represented as lying in front of the lens beyond the pri-

mary focal plane. The solid angle subtended at M by the

opening in the stop is supposed to be smaller than that

subtended by the rim of the lens; that is, as here shown,

Z AMC<Z AMG; and, consequently, the front stop acts here

both as aperture-stop and entrance-pupil, so that the center K
of the aperture-stop is likewise the center O of the entrance-

pupil. Looking through the lens from the other side, one

will see at 0' a virtual, erect image B'C of the aperture-stop

BC, and hence this image is the exit-pupil of the system.

The angle BMC is the aperture-angle of the cone of rays

that come from the axial object-point M in the focus-plane;

after passing through the system, these rays meet at M' in

the screen-plane, the aperture-angle of the bundle of rays
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in the image-space being ZB'M'C. The effective rays

coming from a point Q in the focus-plane are comprised

within ZBQC in the object-space and ZB'Q'C in the

image-space. If the object-point does not he in the

focus-plane, and yet not too far from it, the opening BOC will

act as entrance-pupil for this point also. Thus, for example,

in order to construct the point R' conjugate to an object-

point R which does not he exactly in the focus-plane, we
have merely to draw the straight lines RB, RO, RC until

they meet the lens, and connect these latter points with B',

0', C, respectively, by straight lines which will intersect in

the image-point R'.

Again, consider a system composed of two equal thin

convex lenses whose centers are at Ai and A2 (Fig. 176),

Fig. 176, -Optical system composed of two equal thin convex lenses with

interior stop placed midway between the two lenses.

with a stop UV placed midway between them; if the center

of the stop is designated by K, then AiK =KA2 . The image

of the stop as seen through the front lens is BOC, and its

image as seen by looking through the other lens in the op-

posite direction is B'O'C; these images being equal in size

and symmetrically situated with respect to the stop itself.

The image of the rim of each lens cast by the other lens

should also be constructed, but for the sake of simplicity

these images are not drawn in the figure, because the di-
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ameters of the lenses are taken sufficiently large as com-

pared with the diameter of the stop interposed between

them at K to insure that the latter acts as aperture-stop

with respect to the axial object-point M on which the in-

strument is supposed to be focused. Consequently, since

the stop-image BC subtends at M an angle less than that

subtended by the rim of the front lens or by the image of

the rim of the second lens, it will be the entrance-pupil of

the system; and, similarly, B'C which is the image of BC
formed by the system as a whole will be the exit-pupil.

Thus, in order to construct the image-point M' conjugate

to the axial object-point M, we have merely to draw the

straight line MC and to determine the point where this line

meets the first lens; and from the latter point draw a straight

line through the point V in the edge of the stop to meet the

second lens; and, finally, draw the straight line which joins

this latter point with the point C in the edge of the exit-

pupil; this fine will cross the axis at the required point M'
in the screen-plane. Similarly, drawing from the object-

point Q the three rays QB, QO and QC, we can continue

the paths of these rays from the first lens to the second

through the points U, K and V, respectively, in the stop-

opening; and since the rays must issue from the second lens

so as to go through B', 0' and C, respectively, in the exit-

pupil, their common point of intersection in the image-

space will be the point Q' conjugate to Q. In the diagram

the point Q is taken in the focus-plane; but the same con-

struction will apply also to determine the position of an

image-point R' conjugate to an object-point R which does

not lie in the focus-plane.

136. Aperture-Angle. Case of Two or More Entrance-

Pupils.—The angle OMC=t? (Figs. 175 and 176) subtended

at the axial object-point M by the radius OC of the entrance-

pupil is called the aperture-angle of the optical system. If

we put OC = p (where p is to be reckoned positive or neg-

ative according as the point C lies above or below the axis)
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and OM=2, then tsn\r)=—p/z. In like manner, if r)' =

Z O'M'C denotes the angle subtended at the point M' con-

jugate to M by the corresponding radius of the exit-pupil

(0'C' = p'), and if also O'MW, then tan 77'= -p'/z'.

The pupils of an optical system depend essentially, as has

been stated, on the position of the axial object-point M on

Fig. 177.—Case of two entrance-pupils.

which the instrument is focused. In the diagram (Fig. 177)

I and II represent a pair of stops or stop-images as seen

by an eye looking into the front end of the instrument. Join

one end of the diameter of one of these openings by straight

lines with both ends of the diameter of the other opening;

and let the points where the straight lines cross the axis be

designated by X and Y. The two apertures subtend equal

angles at these points, and hence if the object-point M co-

incides with either X or Y, the entrance-pupil of the system

may be either I or II ; in fact, for these two special positions

of M there will be two entrance-pupils, and, of course, also

two exit-pupils. If the object-point M lies between X and

Y, then in the case represented in the figure the opening II

will subtend a smaller angle at M than the opening I so
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that the former will act as the entrance-pupil. But for any-

other position of the axial object-point M besides those

above mentioned the opening I will be the entrance-pupil.

137. Field of View.—The limitation of the apertures of

the bundles of effective rays is not the only office of the

stops and lens fastenings. One of their most important

functions is to define the extent of the object that is to be

reproduced in the instrument as has been pointed out in

several simple illustrations in the earlier pages of this book

(see §§ 9, 16, 73 and 98). In the adjoining diagram

(Fig. 178), where the entrance-pupil of the system is repre-

sented by the opening BC, the other stops or stop-images in the

object-space act like circular windows or port-holes through

which the rays that are directed from the various parts of

the object towards points in the open space of the entrance-

pupil will have to pass if they are to succeed in getting

through the instrument without being intercepted on the

way. Evidently, that one of these openings which subtends

the smallest angle at the center O of the entrance-pupil will

limit the extent of the field of view in the object-space. This

opening which is represented in the figure by GH is called

the entrance-port; and the material stop or lens-rim which

is responsible for it is called the field-stop (§9).

Let the straight line CH drawn through the upper extrem-

ities of the diameters BC and GH of the entrance-pupil and

entrance-port meet the optical axis in the point designated

by L and the focus-plane in the point designated by U. If

this straight line is revolved around the axis of the instru-

ment, the point U will describe a circle in the focus-plane

around the axial object-point M as center; and it is obvious

that any point in this plane within the circumference of this

circle, or, indeed, any object-point contained inside the

conical surface generated by the revolution of the straight

line passing through C and H, may send rays to all parts

of the entrance-pupil which will not be intercepted any-

where in the instrument. Thus, the entire aperture of the
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entrance-pupil will be the common base of the cones of ef-

fective rays emanating from sources which lie within this

region of the object-space.

Entr-auce
Pupil

Fig. 178. -Field of view of optical system on side of object, determined
by the entrance-pupil and the entrance-port.

Again, the straight line OH drawn through the center of

the entrance-pupil and the upper edge of the entrance-port

will determine a second limiting point V in the focus-plane

which is farther from the optical axis than the first point U;
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and in case of object-points lying in the focus-plane between

U and V the sections of the bundles of effective rays made
by the plane of the entrance-pupil will have areas that are

comprised between the entire area of the opening of the

entrance-pupil and half that area; and this will be true like-

wise with respect to all those points in the object-space that

are contained between the two conical surfaces generated

by the revolution of the straight lines CH and OH around

the axis of symmetry. Such points will not lie outside the

field of view, but although they can utilize more than half

the opening of the entrance-pupil, they are not in a position

to take advantage of the entire opening.

Finally, the straight line BH drawn through the lower

edge of the entrance-pupil and the upper edge of the entrance-

port, which crosses the optical axis at the point marked J,

will determine an extreme point W in the focus-plane which

is more remote from the axis than the point V; and it is evi-

dent from the figure that object-points in the focus-plane

which lie in the annular space between the two circles de-

scribed around M as center with radii MV and MW are

even more unfavorably situated for sending rays into the

entrance-pupil, because they cannot utilize as much as half

of the pupil-opening. In fact, the effective rays which come

from the farthest point W pass through the circumference

of the pupil, and any point lying beyond W will be wholly

invisible, that is, entirely outside the field of view of the

instrument.

Thus, we see that the focus-plane is divided into zones by

three concentric circles of radii MU, MV and MW. Object-

points lying in the interior central zone send their light

through the entrance-pupil without let or hindrance on the

part of the field-stop; so that this is the brightest part of

the field. But in the two outer zones there is a gradual fad-

ing away of light until we reach finally the border of complete

darkness. The three regions of the field of view in the object-

space are usually defined by the angles 271, 27, and 272
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whose vertices are on the optical axis at the points L, O and

J, respectively; so that yi = ZSLH, 7 = ZS0H and 72 =

ZSJH. If the radii of the entrance-pupil and entrance-

port are denoted by p=OC and 6=SH, and if the distance

of the entrance-pupil from the entrance-port is denoted by

c= SO, then

b— p b b+p
tan7i=——-, tan7=--, tan72

=——-.
c c c

The field of view in the image-space is determined in like

manner. The image of the entrance-port GH with its center

at S, which is produced by the entire optical system, is the

exit-port G'H' with its center at S'; and by priming all the

letters in the expressions above a similar system of equations

will be obtained for defining the three regions, 27/, 27'

and 272', of the field of view in the image-space. Generally,

the edge of the field is considered as determined by the cen-

ter of the pupil, that is, by the angle 27 in the object-space

and the angle 27' in the image-space.

138. Field of View of System Consisting of a Thin Lens

and the Eye.—A simple but very instructive illustration of

the principles explained in the foregoing section is afforded

by an ordinary convex lens used as a magnifying glass. In

order to obtain a virtual, magnified image with a lens of

this kind, the distance of the glass from the object must not

exceed the focal length of the lens, and then when the image

is viewed through the glass, the iris of the observer's eye

will act as the aperture-stop of the system, no matter where

the eye is placed, provided the diameter of the pupil of the

eye is less than that of the lens, as is practically nearly al-

ways the case. Moreover, since the pupil of the eye is the

common base of the bundles of rays which come to it from

the various parts of the image, it is the exit-pupil of the

system, and its image in the glass is, therefore, the entrance-

pupil. If the eye is placed on the axis of the lens between

the lens and its second focal point (Fig. 179), the entrance-

pupil will be a virtual image of the pupil of the eye and will
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lie on the same side of the lens as the eye; if the eye is placed

at the second focal point of the glass, the entrance-pupil will

be at infinity (see § 144) ; and, finally, if, as represented in

Fig. 179.—Field of view of thin convex lens when the eye

is between the lens and its second focal plane.

Fig. 180, the eye is placed at a point O' beyond the second

focal point of the convex lens GH, the center of the entrance-

pupil will be at a point O on the same side of the lens as the

object MQ. The distance between the eye and the second

focal point of a convex lens used as a magnifying glass is

never very great, and, consequently, the distance of the cen-

ter O of the entrance-pupil from the first focal point is rela-

tively always quite large. The rim of the glass acts as the

field-stop, and it is at the same time both the entrance-port

and the exit-port of the system; and hence the field of view

exposed to the eye in the image-space is entirely analogous

to the field which would be seen by an eye looking through

a circular window of the same form, dimensions and position

as the lens. Since the exit-port is represented here as being
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at a considerable distance from the exit-pupil, the field of

view will appear vignetted, that is, the border will not be

sharply outlined, but the field will fade out imperceptibly

M'
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" ragged edge" of the field of view, so that only the central

portion which sends complete bundles of rays through the

instrument is visible to the eye.

In the Dutch telescope the ocular is a divergent optical

system which may be represented in a diagram by a con-

Fig. 181.—Ocular system of Galileo's telescope represented in the dia-

gram by a thin concave lens. Diagram shows how the rays, after

having passed through the object-glass, enter the .pupil of the observ-

er's eye B'C. Inverted image of distant object in the object-glass of the

telescope is formed at MQ; M'Q' is the image of MQ in the ocular.

G'H' is the image of the rim of the object-glass in the ocular. B'C is

the image of BC in the ocular.

cave lens (Fig. 181) which is placed between the object-

glass and the real image of the object in the object-glass;

so that so far as the ocular is concerned, this image is a vir-

tual object, shown in the figure by the line-segment MQ.
The eye in this case is usually adjusted very close to the

concave lens. The pupil of the eye is represented in the

figure by the opening B'C' with its center on the axis at 0';

its image in the lens is BC. Here also, just as in the case of

a convergent ocular, the pupil of the eye will act as the exit-

pupil unless the diameter of the lens is so small that the

lens-rim itself performs this office. The image of MQ is

M'Q', which latter will be erect if MQ is inverted, and since

MQ is always inverted in the simple telescope, the final

image in the Dutch telescope is erect. In the case of the

Dutch telescope the rim of the ocular lens does not limit
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the field of view, but this is limited by the rim of the object-

glass, which is the entrance-port of the telescope. Hence,

the image of the object-glass in the ocular is the exit-port.

This image (called the " eye-ring," § 159) is represented in

the diagram by the opening G'H' with its center on the

axis at S'. The object-point Q, as shown in the figure, is

just at the edge of the field, because the image-ray coming

from Q' which is directed towards the center O' of the exit-

pupil is made to pass through the edge of the exit-port (7' =

ZS'OTT).

139. The Chief Rays.—Every bundle of effective rays

emanating from a point of the object contains one ray which

'in a certain sense is the central or representative ray of the

configuration and which may therefore be distinguished as

the chief ray (see § 11). The ray which is entitled to this

preeminence is evidently that one which in traversing the

medium in which the aperture-stop lies passes through the

center K of this stop. If the optical system is free from the

so-called aberrations, both spherical and chromatic (as is

assumed in the present discussion), the chief ray of the

bundle may also be defined as that ray which in the object-

space passes through the center of the entrance-pupil;

but the first definition is preferable because it is applicable

to actual as well as to ideal optical systems.

The totality of the chief rays coming from all parts of the

object constitute, therefore, a homocentric bundle of rays

in the medium where the aperture-stop lies, and these rays

proceed exactly as though they had originated from a lu-

minous point at K.

If the aperture-stop is very narrow, comparable, say, with

the dimensions of a pin-hole, the apertures of the bundles of

effective rays will be correspondingly small; and in the limit

when the opening in the stop may be regarded as reduced to

a mere point at its center K, the ray-bundles will have col-

lapsed into mere skeletons, so to speak, each one represented

by its chief ray. It is because the chief rays are the last
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survivors of the ray-bundles that it is particularly impor-

tant in nearly all optical problems to investigate the pro-

cedure of these more or less characteristic rays.

140. The so-called " Blur-Circles » (or Circles of Dif-

fusion) in the Screen-Plane.—Now if the cardinal points of

the optical system are assigned, the image-relief correspond-

ing to a three-dimensional object may be constructed point

by point, according to the methods which have been ex-

plained. But, as a matter of fact, the image produced by

Fig. 182.—Diagram showing how object-relief and image-relief are pro-

jected in focus-plane and screen-plane from entrance-pupil and exit-

pupil, respectively; and the "blur circles" in these planes.

an optical instrument, instead of being left, as it were,

floating in space, is almost invariably received on a surface

or screen of some kind, as, for example, the ground-glass

plate of a photographic camera. In case the image is vir-

tual, as in a microscope or telescope, it is intended to be

viewed by the eye looking into the instrument, so that here

also in the last analysis the image is projected on the sur-

face of the retina of the observing eye. This receiving sur-

face is called technically the "screen," which affords also

an explanation of the name screen-plane (§ 134) as applied

to the plane conjugate to the focus-plane.

In the diagram (Fig. 182) the screen-plane is placed at
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right angles to the axis at the point marked M' which is

conjugate to the axial object-point M, so that this point is

seen sharply focused on the screen. Evidently, however,

the optical system cannot be in focus for all the different

points of the object-relief at the same time, because the

screen-plane is conjugate to only one transversal plane of

the object-space, namely, the focus-plane perpendicular to

the axis at M. Thus, for example, the reproduction of a

solid object such as an extended view of a landscape on the

ground-glass plate of a camera is not an image at all in the

strict optical sense of the term, inasmuch as it is not con-

jugate to the entire object with respect to the photographic

objective. Only such points of the object as lie in the focus-

plane will be reproduced by sharp clear-cut image-points

in the screen-plane (as, for example, the point marked 1 in

the figure); whereas object-points situated to one side or

the other of the focus-plane will be depicted more or less in-

distinctly on the screen-plane by small luminous areas which

are sections cut out by this plane from the cones of image-

rays emanating originally from points of the object such as

those marked 2, 3 in the diagram. These little patches of

light on the screen, which are usually elliptical in form, and

whose dimensions depend on obvious geometrical factors,

such as the diameter and position of the exit-pupil, etc.,

are the so-called circles of diffusion or "blur-circles," in

consequence of which details of the image as projected on

the screen are necessarily impaired to a greater or less

degree.

It is a simple matter to reconstruct the object-figure

which is optically conjugate to this configuration of image-

points and "
blur-circles" in the screen-plane, which will

obviously be a similar configuration of object-points and

"blur-circles" all lying in the focus-plane. Moreover, since

the exit-pupil is conjugate to the entrance-pupil, the cones

of rays in the object-space corresponding to those in the

image-space may be easily constructed by taking the points
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of the object-relief as vertices and the entrance-pupil as the

common base of these cones. The tout ensemble of the sec-

tions of all these bundles of object-rays made by the focus-

plane will evidently be the figure in the object-space that

corresponds to the representation on the screen, and ac-

cording to the theory of optical imagery these two plane

configurations will be similar. This " vicarious" object in

the focus-plane is sometimes called the projected copy of the

object-relief, because it is obtained by projecting the points

of the object from the entrance-pupil on the focus-plane.

141. The Pupil-Centers as Centers of Perspective of

Object-Space and Image-Space.—It hardly needs to be

pointed out that the " blur-circles " which arise from this

Fig. 183.—Projection of object-relief and image-relief in focus-plane and
screen-plane from the centers of entrance-pupil and exit-pupil, respectively.

mode of reproducing a solid object on a plane (or curved)

surface are due to no faults of the optical system itself, but

are necessary consequences of the mode of representation,

having their origin, in fact, in the object-space by virtue of

the process employed. The only possible way of diminish-

ing or eliminating the indistinctness or lack of detail in the

reproduction of parts of the object that do not lie in the

focus-plane consists in reducing the diameter of the aperture-

stop, or in " stopping down" the instrument, as it is called.
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If the stop-opening is contracted more and more until finally

it is no larger than a fine pin-hole, the pupils likewise will

tend to become mere points at their centers O, O' (Fig. 183),

and the " blur-circles " both in the focus-plane and in the

screen-plane will diminish in area pari passu and ultimately

collapse also into the points where the chief rays cross this

pair of conjugate planes. The points marked I, II, III,

etc., where the chief rays belonging to the object-points 1,

2, 3, etc., cross the focus-plane, and which are the centers of

the so-called " blur-circles" in this plane, are obtained,

therefore, by projecting all the points of the object from the

center of the entrance-pupil on to the focus-plane. This

mode of representing a three-dimensional object is, however,

in no wise peculiar to the optical system itself, but is the

old familiar process of perspective reproduction by central

projection on a plane. Thus, the pupil-centers O, 0' are to

be regarded as the centers of perspective of the object-space

and image-space, respectively.

142. Proper Distance of Viewing a Photograph.—These

principles explain why it is necessary to view a photograph

at a certain distance from the eye in order to obtain a cor-

rect impression of the object which is depicted. Suppose,

for example, that O, 0' (Fig. 184) designate the centers of

the pupils of a photographic lens, and that an object NR is

reproduced in the screen-plane by the perspective copy

M'Q' whose size is one kth. of that of the projection MQ of

the object in the focus-plane. Now if the picture is to pro-

duce the same impression as was produced by the original

itself on an observer with his eye placed at O, the photo-

graph must be held in front of the eye at a place P such that

the visual angle KOP which it subtends at the center of

rotation of the eye shall be equal to the angle QOM ; that is,

the distance PO in the figure must be equal to one kth. of

the distance of the center of the entrance-pupil from the

focus-plane, or PO = MO//c. If (as is usually the case with

a landscape lens) the focus-plane is at infinity, then PO will
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be equal to the focal length (/) of the objective. Generally

speaking, we may say, therefore, that the correct distance

for viewing a photograph of a distant object is equal to the

focal length of the objective, this distance being measured

Screen
Plane

Fig. 184.—Correct distance of viewing photograph.

from the picture to the center of rotation of the observer's

eye. Accordingly, if the focal length is less than the dis-

tance between the near point of the eye and the center of

rotation, which in the case of a normal emmetropic eye of

an adolescent is about 10 or 12 cm., it will be impossible to

see the picture distinctly with the naked eye and at the same

time under the correct visual angle. Moreover, even if the

focal length of the photographic lens were not less than this

least distance of distinct vision, the effort of accommodation

which the eye has to make in order to focus the image sharply

on the retina under the correct visual angle will superinduce

an illusion which will be different from the impression of

reality which it is the purpose of the picture to convey. In

the case of a photograph made by an objective of very short

focal length it is possible indeed to make an enlarged copy

which may be viewed at the correct distance, but this is

always more or less troublesome and expensive. Dr. Von
Rohr has invented an instrument called a verant which is

ingeniously designed to oyercome as far as possible the dif-

ficulties above mentioned; so that viewed through this ap-
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paratus the photograph is seen more or less exactly as the

object appeared.

143. Perspective Elongation of Image.—If the screen-

plane is not focused exactly on the image-point R' (Fig. 185),

Fig. 185.—Perspective elongation of image.

this point will be shown on the screen by a "blur-circle'
7

whose center will be at the point Q' which is the projection

of R' from the center O' of the exit-pupil. Let e = L'M'
denote the distance of the screen-plane M'Q' from the image-

plane L'R', where L', M' designate the feet of the perpen-

diculars dropped from R', Q', respectively, on the axis.

From the diagram we obtain the proportion

:

M'Q' ^ 0'M' _ Q'M'

TTW'MZ ~0'M'+M'L' ;

which may be written:

y'ly'^z'Kz'-e),

where y' = M'Q', y" = L'R' and z' = 0'M'. Moreover, since

e may be regarded as small in comparison with z
f

, we obtain :

y'— y" =—y" i approximately.

The difference (y'—y") is the measure of the perspective

elongation due to imperfect focusing.

If the exit-pupil is at infinity, then R'Q' will be parallel

to the axis and y
f = y" ; and under these circumstances, the

perspective reproduction in the screen-plane will be of the

same size as the image, no matter how much it is out of focus.
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144. Telecentric Systems.—A common laboratory use of

an optical instrument is to ascertain the size of an inacces-

sible or intangible object from the measured dimensions of

its image as determined by means of a scale on which the

Fig. 186.—Telecentric optical system: Case of a thin convex lens with front

stop in first focal plane. Object represented by LR; blurred image
M'Q' appears of the same size as sharp image L'R'.

image is projected; but, in general, unless the scale is exactly

in the same plane as the image, there will be a parallax error

in the measurement of the image due to its perspective

elongation. However, if the chief rays in the image-space

are parallel to the axis, which may be effected by placing the

aperture-stop so that the entrance-pupil lies in the primary

focal plane of the instrument, as illustrated in Fig. 186, the

perspective elongation vanishes (y'—y" = 0, as explained

in § 143); and, consequently, the image y" = L'R' will ap-

pear of the same size as its projection ?/ = M'Q', no matter

whether it lies in the same plane as the scale or not.

Similarly, if the aperture-stop is placed so that the en-

trance-pupil is at infinity and the exit-pupil lies therefore in

the secondary focal plane, the chief rays in the object-space

will then all be parallel to the optical axis.

Systems of this description in which one or other of the

two projection centers 0, 0' is at infinity are said to be
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telecentric. This is the principle of nearly all systems for

micrometer measurements of optical images.

A simple illustration of a device of this kind that is tele-

centric on the side next the object is afforded by the oph-

thalmic instrument called a keratometer, which, as the name
implies, is intended primarily to measure the diameter of the

cornea or the apparent diameter of the eye-pupil. It is used

also to measure the distance of a correction-glass (§ 154)

from an ametropic eye (§ 153), which is an important factor

in the prescription of spectacles. The instrument consists

essentially of a long narrow tube, near the middle of which

is mounted a convex lens of low power adjusted so that its

second focal point F' coincides exactly with the center of a

small aperture in a metal disk placed at the end of the tube

where the observer puts his eye. At the opposite end of the

tube a scale graduated in half-millimeters is mounted so that

eye of
Patient;

r^i ;
Spectacle Glass

Scale

Fig. 187.—Diagram of instrument called keratometer, as used to measure

the distance of spectacle glass from the cornea of the eye.

its upper edge coincides with a horizontal diameter of the

tube at this place. The upper part of this end of the tube

is cut away in order to admit sufficient light to illuminate the

scale.

When the keratometer is used to measure the distance

between the vertex of the cornea and the vertex of the cor-

rection-glass, it is placed with its axis at right-angles to the

line of sight of the patient, as represented in the diagram

(Fig. 187), the scale being brought as near as possible to
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the patient between his eye and the spectacle-glass. The

distance AB to be measured is projected on the scale by

rays that are parallel to the axis of the lens, so that when

the observer looks through the instrument he can read off

this distance on the image of the scale.

Practically the same principle is employed also in Badal's

optometer for measuring the visual acuity of the eye. It

Fig. 188.

—

Badal's optometer, with second focal point (F)' of

convex lens at first nodal point of patient's eye; forming in

conjunction with the eye a telecentric system.

consists of a single convex lens mounted at one end of a long

graduated bar which is provided with a movable carrier

holding a test-chart of some kind. If the lens, which usually

has a refracting power of about 10 dioptries, is adjusted

about 9 cm. in front of the cornea so that its second focal

point F' coincides with the nodal point of the eye (Fig. 188),

a ray meeting the lens in a direction parallel to the axis will

emerge from it so as to go through the nodal point of the

Fig. 189.

—

Badal's optometer, with second focal point (F') of

convex lens at first focal point of patient's eye; forming in

conjunction with the eye a telescopic system.

eye and thence to the retina without change of direction.

Accordingly, just as though a narrow aperture were placed
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at the nodal point of the eye, the size of the retinal image

will not be altered whether the object or chart on the bar be

far or near; whereas the distinctness with which the details

of the object are seen, which affords the measure of the visual

acuity, will depend on the distance of the object.

Another method of using this optometer is to place the

lens about 2 cm. farther from the eye, as shown in Fig. 189,

so that now its second focal point lies in the anterior focal

plane of the eye. Under these circumstances an incident

ray proceeding parallel to the axis will emerge from the lens

and cross the axis at the anterior focal point of the eye, so

that after traversing the eye-media it will again be parallel

to the axis. Consequently, here also the image formed on

the retina will be of the same size no matter where the object

is placed on the bar in front of the lens, just as if there were

a narrow stop at the anterior focal point of the eye. In this

latter adjustment the lens and the eye together constitute

an optical system which is telecentric on both sides, that is,

a telescopic system (§ 125).

PROBLEMS

1. A cylindrical tube, 2 cm. in diameter and 10 cm. long,

is closed at one end by a thin convex lens of focal length 4 cm.

If this end of the tube is pointed towards a distant object,

what will be the position and diameter of the entrance-

pupil? Ans. 6| cm. in front of the lens; diameter, 1^ cm.

2. In the preceding problem, where would the object have

to be in order that the lens itself might act as entrance-

pupil?

Ans. In front of the lens, not more than 20 or less than

4 cm. away.

3. If in No. 1 the other end of the tube is closed by a thin

eye-lens whose focal length is such that when the combina-

tion is pointed at an object 24 cm. from the object-glass, the

bundles of rays issuing from the eye-lens are cylindrical, find
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the positions of the pupils of the system and the focal length

of the eye-lens.

Ans. Entrance-pupil 6| cm. in front of object-glass;

exit-pupil coincides with eye-glass; focal length of eye-glass,

5.2 cm.

4. In the preceding problem what will be the answers on

the supposition that the object is 12 cm. from the object-

glass?

Ans. Entrance-pupil coincides with object-glass; exit-

pupil is 6| cm. beyond eye-glass; focal length of eye-

glass, 4 cm.

5. A real inverted image of an extended object is formed

by the object-glass of a simple astronomical telescope in the

primary focal plane of the eye-glass. The focal lengths of

the object-glass and eye-glass are 2 feet and 1.5 inches, re-

spectively, and their diameters are 6 inches and 1 inch,

respectively. If the distance of the object from the object-

glass is 240 feet, find the position and diameter of the en-

trance-port and the diameter of the portion of the object

that is completely visible through the telescope.

Ans. Entrance-port is 30.21 feet from object-glass, and

its diameter is 1.175 feet; diameter of visible portion of ob-

ject, 5.865 feet.

6. A thin convex lens of focal length 10 cm. and diameter

4 cm. is used as a magnifying glass. If an eye adapted for

parallel rays is placed at a distance of 5 cm. from the lens,

what will be the diameter of the portion of the object that

can be seen distinctly? Ans. 8 cm.

7. The diameter of a thin convex lens is 1 inch, and its

focal length is 10 inches. The lens is placed midway between

the eye and a plane object which is 10 inches from the eye.

How much of the object is visible through the lens?

Ans. 1| inch.



CHAPTER XIII

OPTICAL SYSTEM OF THE EYE. MAGNIFYING POWER
OF OPTICAL INSTRUMENTS

145. The Human Eye.—The organ of vision is composed

of the eye-ball, wherein the visual impulses are produced by

the impact of light; the optic nerve which transmits these

excitations to the brain; and the visual center in the brain

where the sensation of vision comes to consciousness.

The eye-ball (Fig. 190) lying in a bony socket on a cushion

of fat and connective tissue, in which it is free to turn in all

directions with little or no friction, consists of an almost

spherical dark chamber, filled with transparent optical media

which form the optical system of the eye (Fig. 191). The

outer protecting envelope of the eye-ball is the tough, white

membrane called, from its hardness, the sclerotic coat or sclera,

popularly known as the " white of the eye." This opaque

membrane is continued in front by a round opening or win-

dow called, on account of its horny texture, the cornea. The

cornea is beautifully transparent, and its mirror-like surface

forms a slight protuberance shaped something like a watch-

glass or a prolate spheroid. In the interior of the eye the

sclerotic coat is overlaid with the dark-colored choroid which

contains the blood-vessels that nourish the eye and also a

layer of brown pigment acting to protect the dark chamber

of the eye from diffused light. Behind the cornea lies the

anterior chamber filled with transparent fluid called the

aqueous humor. This anterior chamber is limited behind the

iris, which, rich in blood-vessels, imparts to the eye its char-

acteristic color. This is an opaque screen or curtain which

contains a central hole, the pupil, which is circular in the

human eye. The aperture of a bundle of rays entering the

425
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eye from a luminous point, in proportion to the dimensions

of the eye, is enormous as compared, for example, with the

same magnitude in a telescope; and the office of the pupil is

to stop down this aperture to suitable proportions. The
pupil contracts or dilates involuntarily and regulates the

quantity of light that is admitted to the eye. In the struc-

ture of the iris there are two sets of fibers, the circular and
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the radiating; when the circular fibers contract, the pupil

contracts, and when the radiating fibers contract, the pupil

dilates. In the front part of the eye the choroid lining is

bordered at the edge of the cornea by a kind of folded drapery

the so-called ciliary body, which is hidden from without be-
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hind the iris and which contains the delicate system of

muscles which control the mechanism of accommodation.

The crystalline lens composed of a perfectly transparent

substance is indirectly attached to the ciliary body by a

band which surrounds the edge of the lens like a ring and

which is disposed in radial folds somewhat after the manner

of a neck-frill. This band is the suspensory ligament or zonule

of Zinn. The lens itself is double convex, the posterior sur-

face being more strongly curved than the anterior surface.

The substance of the lens consists of layers of different in-

dices of refraction increasing towards the center or core of the

lens. The entire space behind the lens is filled with a trans-

parent jelly-like substance called the vitreous humor, which

has the same index of refraction as the aqueous humor,

namely, 1.336.

The light-sensitive retina lying on the inside of the choroid

is exceedingly delicate and transparent. In spite of its

slight thickness which nowhere exceeds 0.4 mm., the struc-

ture of the retina is very complicated, and no less than ten

layers have been distinguished (Fig. 192). The layer next

the vitreous humor is composed of nerve-fibres spreading

out radially from the optic nerve. This layer is connected

with the following layer containing the large ganglion or

nerve-cells, and this in turn is connected by an apparatus

of fibers and cells with the peculiar light-sensitive elements

of the retina, the so-called visual cells which form the "bacil-

lary layer." These visual cells consist of characteristic

elongated bodies which are distinguished as rods and cones.

The rods are slender cylinders, while the cones or bulbs are

somewhat thicker and flask-shaped. They are all disposed

perpendicularly to the surface of the retina, closely packed

together, so as to form a mosaic layer at the back of the

retina.

Near the center of the retina at the back of the eye, a little

to the temporal side, is located the yellow spot or macula lutea,

where the visual cells are composed mostly of cones. This
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is the most sensitive part of the retina, especially the minute

pit or depression at the center of this area, called the fovea

centralis, which consists entirely of cones densely crowded

together.

As compared with an artificial optical instrument, the
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Fig. 192.—Structure of the retina of the human eye.

field of view of the immobile eye is very extensive, amounting

to about 150° laterally and 120° vertically. The diameter

of the fovea centralis corresponds in the field of vision of the

eye to an angular space which may be covered by the nail

of the fore finger extended at arm's length. In this part of

the field vision is so acute that details of an object can be
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distinguished as separate provided their angular distance is

not less than one minute of arc (cf. §10). If the apparent size

of an object is so small that its image formed on the retina at

the fovea centralis covers only a single visual cell, the object

ceases to have any apparent size at all and cannot be dis-

tinguished from a point. The size of the retinal image corre-

sponding to an object whose apparent size is one minute of

arc is found by calculation from the known optical constants

of the eye to be 0.00487 mm. Anatomical measurements

give a similar value for the diameter of a visual cell.

The inverted image cast on the retina of the eye has been

compared to a sketch which is roughly outlined in the outer

parts, but which is more and more finely executed in towards

the center, until at the fovea centralis itself the details are

exquisitely finished. Thus, only a comparatively small

portion of an external object can be seen distinctly by the

eye at any one moment. If all the parts of the field of view

were portrayed with equal vividness at the same time and

came to consciousness at once, the spectator would be com-

pletely bewildered and unable to concentrate his attention

on a particular spot or phase of the object.

The ends of the rods next the choroid contain a coloring

matter which is sensitive to light, the so-called visual purple,

which is bleached white by exposure to bright light, but

which is renewed in darkness by the layer of cells lying be-

tween the choroid and the retina. The light-disturbance

arriving at the retina penetrates it as far as the bacillary

layer of rods and cones, and the stimulus is transmitted back

through the interposed apparatus to the layer of nerve-

fibers and thence conducted to the optic nerve in communi-

cation with the brain.

Not far from the center of the retina, a little to the nasal

side, the optic nerve pierces the eye-ball through the sclera

and choroid. Here the retina is interrupted, so that any light

which falls on the optic nerve itself cannot be perceived.

This is the place of the so-called blind-spot (punctum ccecum)



§ 146] Optical Constants of Eye 431

of the eye. Corresponding to the area of the blind spot,

there is a gap in the field of vision of the eye amounting to

about 6° horizontally and 8° vertically. The dimensions of

the blind spot are great enough to contain the retinal im-

ages of eleven full moons placed side by side. The optic

nerve leaves the eyeball through a bony canal and passes

thence to the visual center of the brain.

The mobility of the eye is produced by six muscles, the

four recti and the two oblique muscles (Fig. 190). The recti

originate in the posterior part of the socket and are attached

by their tendons to the sclera so as to move the eye up or

down and to the right or left. The procedure of the oblique

muscles is more complicated. The superior oblique, which

also arises in the posterior part of the socket, passes in the

front of the eye through a loop or kind of pulley lying on

the upper nasal side of the socket and then turns downwards

to attach itself to the sclera. The inferior oblique muscle has

its origin on the front lower nasal side of the eye-socket,

and passes to the posterior surface of the eye-ball, being at-

tached to the sclera on the temporal side. The superior ob-

lique turns the eye downwards and outwards, and the inferior

oblique turns it upwards and outwards.

The motor muscles of the two eyes act together so that

both eyes turn always in the same sense, to the right or to

the left, up or down. It is impossible to turn one eye up
and the other down at same time, so as to look up to the

sky with one eye and down at the earth with the other.

146. Optical Constants of the Eye.—The optical axis of the

eye may be defined as the normal to the anterior surface of

the cornea which goes through the center of the pupil. This

line passes approximately through the centers of curvature

of the refracting surfaces. The schematic eye (see § 130) is

a centered system of spherical refracting surfaces symmetric

with respect to the optical axis. The point where the optical

axis meets the anterior surface of the cornea is called the

cornea vertex or anterior pole of the eye and is designated
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by A ; and the point where the optical axis meets the retina

is called the posterior pole of the eye and is designated by B.

In Gullstrand's schematic eye the distance from A to B
is equal to 24 mm., therefore somewhat less than an inch.

The motor muscles of the eye (§ 145) , acting in pairs, turn

the eye-ball around axes of rotation which all pass through

a fixed point or pivot called the center of rotation of the eye

and designated by Z. This point may be considered as

lying also on the optical axis in the medium of the vitreous

humor about 13 or 14 mm. from the vertex of the cornea or

about 10.5 mm behind the pupil. All the excursions of the

eye are performed around this point.

The object-point which is sharply imaged on the retina at

the fovea centralis (§ 145) is called the point offixation, and the

straight line which joins the point of fixation with the centre

of rotation is called the line of fixation. This line indicates

the direction in which the eye is looking. The field of fixa-

tion is measured by the greatest angular distance through

which the line of fixation can be turned; which amounts to

about a right angle both vertically and horizontally.

In Gullstrand's schematic eye, as was shown in § 130,

the primary focal point F lies in front of the eye at a dis-

tance of 15.707 mm. from the anterior vertex of the cornea,

while the secondary focal point F' lies on the other side of

the cornea at a distance of 24.387 mm. The principal points

(H, H') lie in the aqueous humor slightly beyond the cor-

nea system at distances AH = +1.348 mm., AH' = +1.602

mm. Thus the focal lengths are: /= +17.055 mm. /' =

— 22.785 mm.; the ratio between them being equal to 1.336,

which is therefore the value of the index of refraction (n')

of the vitreous humor. Accordingly, the refracting power

of Gullstrand's schematic eye is F= 58.64 dptr. The

nodal points (N, N') lie close to the posterior vertex of the

crystalline lens, on opposite sides of it, at the following dis-

tances from the vertex of the cornea: AN = +7.078 mm.,

AN'= +7.332 mm. The straight line which joins the point
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of fixation with the anterior nodal point of the eye is called

the visual axis. It is parallel to the straight line which joins

the posterior nodal point with the fovea centralis. Since the

nodal points are so close together, for many problems con-

nected with the eye they may be regarded as coincident; so

that then the visual axis may be defined as the line drawn

from the point of fixation to the fovea centralis. The visual

axis meets the cornea a little to the nasal side of the anterior

vertex and slightly above it, forming with the optical axis an

angle between 3° and 5°.

The above values are all given for the passive, unaccommo-

dated eye. By the act of accommodation the positions of

the focal points, principal points and nodal points are all dis-

placed, and accordingly the focal lengths and the refracting

power of the eye can be varied within certain limits depend-

ing on the power of accommodation, as will be explained in

the following section.

147. Accommodation of the Eye.—When the eye is at rest,

as when one gazes pensively into space, it is adapted for far

Fig. 193.—Accommodation of the human eye;

indicating how the crystalline lens is changed
from far vision to near vision.

vision, so that in order to see distinctly objects which are close

at hand, an effort has to be made which will be greater in
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proportion as the object fixed is nearer to the eye. This proc-

ess whereby the normal eye is enabled to focus on the retina

in succession sharp images of objects at different distances

is called accommodation, and it is this marvelous adapt-

ability of the human eye, together with its mobility, which

perhaps more than any other quality entitles it to superior-

ity over the most perfectly constructed artificial optical in-

struments. The power of accommodation is achieved by

changes in the form of the crystalline lens, consisting chiefly

in a change in the convexity of the anterior surface, produced

through the mechanism of the ciliary muscle. According

to the generally accepted theory, so long as the eye is passive,

the elastic substance of the lens is held flattened in front by

the suspensory ligament; but in the act of accommodation

the ciliary muscle contracts, and this is accompanied by a

relaxation of the ligament of the lens, which is thereby

permitted to bulge forward by virtue of its own elasticity

(Fig. 193).

148. Far Point and Near Point of the Eye.—The far point

of the eye {punctum remotum) is that point (R) on the axis

which is sharply focused at the posterior pole of the eye

when the crystalline lens has its least refracting power; it

is the point which is seen distinctly when the accommodation

is entirely relaxed. On the other hand, the near point (or

punctum proximum) is that point (P) on the axis which is

seen distinctly when the crystalline lens has its greatest re-

fracting power, that is, when the accommodation is exerted

to the utmost. The region of distinct vision within which an

object must lie in order that its image can be sharply fo-

cused on the retina of the naked eye is comprised between

two concentric spherical surfaces, the far point sphere and

the near point sphere, described around the center of ro-

tation of the eye (Z) with radii equal to ZR and ZP, re-

spectively. If the far point lies at infinity, as is the case in the

normal eye, the far point sphere is identical with the infinitely

distant plane of space {cf. § 83), as represented in Fig. 194;
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whereas the near point sphere will be real and at a finite

distance in front of the eye. In such a case the eye can be

directed towards any point in the field of fixation (§ 146)

lying on or beyond the near point sphere and accommodate

Neat- Point
Sphere

Fig. 194.—Region of accommodation of emmetropic eye.

itself to see this point distinctly. In a near-sighted eye both

far point and near point are real points lying at finite dis-

tances in front of the eye; but the far point of a far-sighted

eye is a " virtual" point lying at a finite distance behind the

eye, and hence an unaided far-sighted eye cannot see dis-

tinctly a real object without exerting its accommodation to

a greater or less degree.

149. Decrease of the Power of Accommodation with

Increasing Age.—The faculty of accommodation is greatest

in youth and diminishes rapidly with advancing years.

The near point of the eye gradually recedes farther and far-

ther away, which is commonly supposed to be due to a pro-

gressive diminution of the elasticity of the crystalline lens.

Thus, at the ages of 10, 20 and 40 years the punctum proxi-

mum of a normal eye, according to Donders, is in front of

the eye at distances from the primary principal point equal

to 7.1, 10 and 22.2 cm., respectively. When the near point

has retreated to a distance of 22 cm., so that it is no longer

possible to read or write or do "near work" conveniently

without the aid of spectacles, the condition of presbyopia

or old-age vision has begun to set in. Meantime, while the
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power of accommodation of the eye thus continually dimin-

ishes as the near point recedes farther and farther away,

the position of the far point remains practically fixed until

well after middle life; but between the ages of 55 and 60

years it too begins to separate farther from the eye, and

thereafter both the near point and the far point travel out-

wards along the axis of the eye, the former, however, con-

stantly gaining on the latter; until at last in extreme old age

the near point actually overtakes the far point, and from

that time until death they remain together, the power of

accommodation having been entirely lost. Both points are

displaced along the axis always in the same direction, that is,

opposite to that of the incident light. For example, the far

point of a normal eye is infinitely distant up to about 55

years of age, whereas ten years later, according to Donders,

this point will be about 133 cm. behind the eye, having

moved out through infinity, so to speak, and approached

the eye from behind. At the sanie age, namely, 65 years,

the near point will also be behind the eye at a distance of

400 cm. At 75 years of age the two points will be together

at a distance of 57.1 cm. behind the eye. Various theories

have been advanced to account for the senile recession of

the far point of the eye. It is probably due to a combina-

tion of causes, partly to a change in the form of the lens pro-

duced by the increased resistance of the enveloping coat of

the eye-ball and the decreased pressure of the surrounding

tissue, and partly also to senile changes in the lens-substance

itself whereby the " total index" of the lens is lowered in

value.

150. Change of Refracting Power in Accommodation.—
It was remarked above (§ 146) that the positions of the car-

dinal points of the optical system of the eye are all altered

in the act of accommodation. Thus, for example, in Gull-

strand's schematic eye, which is calculated for an adoles-

cent youth, the near point is at a distance AP = — 10.23 cm.

from the vertex of the cornea; and for this state of maxi-
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mum accommodation the positions of the focal points and

principal points are found to be as follows

:

AF = - 12.397 mm., AF ' = +21.016 mm.,

AH = + 1.772 mm., AH' = + 2.086 mm.;
and, accordingly, the focal lengths and the refracting power

are:

i=+14.169mm., /'= -18.930 mm., F= +70.57 dptr.

It will be observed that, whereas the focal points have un-

dergone considerable displacements from their positions in

the passive eye, the corresponding displacements of the

principal points are less than half a millimeter; and since in

most physiological measurements half a millimeter is within

the limit of error, we can usually afford to neglect altogether

the accommodative displacement of the principal points of

the eye, that is, we may regard the positions of the princi-

pal points H, H' as practically fixed and independent of

the state of accommodation. This is one reason, among
others, why the principal points of the eye have super-

seded the other cardinal points as points of reference. Their

proximity to the cornea is another advantage, inasmuch as

measurements referred to them are easily related to an ex-

ternal, visible and tangible point of the eye. In the so-

called "reduced eye," which consists of a single spherical

refracting surface separating the outside air from the vitre-

ous humor and so placed that its vertex lies at the primary

principal point of the schematic eye, the two principal points

are, in fact, coincident with each other on the surface of this

simplified cornea.

151. Amplitude of Accommodation.

—

The far point dis-

tance(a) and the near point distance (b) are the distances of

the far point and near point, respectively, measured from

the primary principal point of the eye; thus, a = HR, b =

HP; it being tacitly assumed here that the position of the

point H remains sensibly stationary during accommodation,

as was explained above. Each of these distances is to be

reckoned negative or positive according as the point in ques-
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tion lies in front of the eye or behind it, respectively. The

reciprocals of these magnitudes, namely, A= l/a, B = l/b,

are termed the static refraction (A), or the refraction of the

eye when the accommodation is completely relaxed, and the

dynamic refraction (B), or the refraction of the eye when

the accommodation is exerted to the highest degree. If the

distances a and b are given in meters, the reciprocal magni-

tudes will be expressed in dioptries, as is generally the case.

The range of accommodation is denned to be the distance

of the near point from the far point, that is, RP = b — a;

whereas the amplitude of accommodation is the value obtained

by subtracting algebraically the magnitude of the dynamic

refraction from that of the static refraction, thus:

Amplitude of Accommodation =A— B.

Imagine a thin convex lens placed in the primary principal

plane of the eye with its axis in the same line as the optical

axis of the eye, and of such strength that it produces at the

far point of the eye an image of the near point; according to

the above definition, the amplitude of accommodation of

the eye is equal to the refracting power of this lens. For ex-

ample, in the normal eye at 30 years of age, a= oo, b =

— 14.3 cm., so that the amplitude of accommodation in this

case amounts to 7 dptr.; whereas at 60 years of age a =

+200 cm., b =—200 cm., and hence the amplitude of ac-

commodation will have been reduced to 1 dptr.

The distance from the secondary principal point (H') to

the posterior pole (B) where the optical axis meets the retina

may be regarded as a measure of the length of the eye-axis,

especially since the position of H' is sensibly independent

of the state of accommodation, as has been explained, (§ 150).

If this distance is denoted by a', that is, if we put a'
'=

H'B, and if also we put A!' = n'/a'', where n' denotes the

index of refraction of the vitreous humor, then we may write

:

A'=A+F,
where F denotes here the refracting power of the passive,

unaccommodated eye. Similarly, if the symbol Fa is em-
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ployed to denote the refracting power of the eye in its state

of maximum accommodation, we shall have:

A' =B+F& .

Consequently, we may also say that the power of accommo-
dation (A — B) is equal to the difference (F^— F) between

the greatest and least values of the refracting power of the

eye.

152. Various Expressions for the Refraction of the Eye.

—The refraction of the eye in a given state of accommoda-
tion is measured by the reciprocal of the distance from the

eye of the axial object-point M for which the eye is accom-

modated. Thus, if w=HM, x=FM denote the distances of

M from the primary principal point and the primary focal

point, respectively, the magnitudes U = l/u and X = l/x,

usually expressed in dioptries, are the measures of the prin-

cipal point refraction and the focal point refraction. The
relation between U and X may be given in terms of the re-

fracting power of the eye (F) when it is accommodated for

the object-point M, as follows:

TJ _ F.X v _ F.U
U
~F-X' F+U'

If an arbitrary point O on the axis of the eye is selected

as the point of reference, and if we put OM = 2, the refrac-

tion of the eye, referred to the point O, will be measured by

Z = 1/z. If the distances of the points H and F from are

denoted by b and g, that is, if 6 = OH, g = OF, then since

z = u+b = x+g, we can obtain also the following useful re-

lations between U, X and Z in terms of b and g:

Z X

x=

l-b.Z l-(b-g)X'
Z u

1-g.Z l+(b-g)U'
U X

1+b.U 1+g.X'
153. Emmetropia and Ametropia.—When the static re-

fraction of the eye is equal to zero (A=0), that is, when
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the far point (R) is infinitely distant, the eye is said to be

emmetropic. If in the equation A'=A+F, we put ^4 = 0,

we obtain A' = F, which therefore may be said to be the

condition of emmetropia. Here F denotes the refracting

power of the eye when accommodation is entirely relaxed.

In emmetropia, therefore, the second focal point (F') of

the passive eye lies on the retina at the posterior pole (B)

;

To Rat co

Fig. 195.—Diagram of emmetropic eye.

so that in a passive emmetropic eye incident parallel rays

are converged to a focus on the retina, as represented in

Fig. 195, and the length of the eye-axis is a' = —/'. The

normal position of the far point is to be regarded as at in-

finity; and in this sense an emmetropic eye is a normal eye,

although, strictly speaking, an emmetropic eye may at the

same time be abnormal in various ways.

On the other hand, if the static refraction of the eye is

different from zero (A^O), that is, when the far point (R)

is not infinitely distant, the eye is said to be ametropic

Thus, the condition of ametropia may be said to be charac-

terized by the fact that the refracting power (F) of the

unaccommodated eye is not equal to A'
}
which is equiva-

lent to saying that the length of the eye-axis (a') is numer-

ically different from the value of the second focal length

(/'). In other words, the second focal point (F') of an

ametropic eye in a state of repose does not fall on the retina.

Two general divisions of ametropia are distinguished de-

pending, on whether the far point (R) lies on one side or the
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other of the primary principal point (H). Thus, if A<Q,
that is, if the far point lies at a finite distance in front of the

eye, the ametropia in this case is called myopia (Fig. 196).

In a myopic eye in a state of repose the second focal point

Fig. 196.—Ametropic eye: myopia.

(F') lies in front of the retina (in the vitreous humor), so

that parallel incident rays will be brought to a focus be-

fore reaching the retina. On the other hand, if A>0, the

far point will lie at a finite distance beyond (or behind) the

Fig. 197.—Ametropic eye: hypermetropia.

eye, and this form of ametropia is known as hypermetropia

(Fig. 197). In a hypermetropic eye in a state of repose the

second focal point (F') falls beyond the retina, so that in-

cident parallel rays arrive at the retina before coming to a

focus. A myopic eye cannot focus for a distant object with-

out the aid of a glass, and it lacks therefore an important

part of the capacity of an emmetropic eye. On the other

hand, a hypermetropic eye must make an effort of accom-

modation each time in order to focus on the retina the image
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of a real object; which frequently produces various troubles,

sometimes very annoying. Accordingly, both conditions

included under the general name of ametropia are disad-

vantageous for practical vision.

Theoretically, ametropia may be considered as due to

some abnormality in the values of one or of both of the mag-
nitudes denoted by A' and F' on which the value of the

static refraction (^4) depends; so that the following cases

are possible:

(1) The length of the eye-ball (a') may be too great

(axial myopia, a f> —/') or too small (axial hypermetropia,

a' < —/'), whereas the refracting power (F) is normal. This,

by far the most common, type is known as axial ametropia.

(2) On the other hand, while the length of the eye-ball

may be normal, the magnitude of the refracting power (F)

may be abnormally great or small. In general, this form of

ametropia, which is comparatively rare, is due to abnormal

curvatures of the refracting surfaces {curvature ametropia).

Or the indices of refraction of the eye-media may have ab-

normal values (indicial ametropia). Here also may be men-

tioned the condition known as aphakia produced by the

extraction of the crystalline lens in the operation for cataract.

(3) Finally, it may happen that the refracting power and

the length of the eye-ball are both abnormal. In fact, these

two anomalies might exist together in exactly the degree

necessary to counteract each other, so that, in spite of its

abnormalities, the eye in such a case would be emmetropic.

In the case of axial ametropia, the relation between the

static refraction (A) and the length (I) of the eye-ball is

given by the following formula:

<=AB =AH+^
and if the values for Gullstrand's schematic eye (§ 146)

are substituted in this formula, it may be written as follows:

1 = 1.602+————- millimeters.
^4 +58.64



§154] Correction Eye-Glasses 443

According to this formula, the length of the eye varies from

about 21.07 mm. in extreme axial hypermetropia (A =

+ 10 dptr.) to about 36.18 mm. in case of the highest degree

of axial myopia (A =—20 dptr.). The length of an axially

emmetropic eye (.4=0) is 24,38 mm. The length of Gull-

tnttt
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principal points of the lens are designated by Hi and Hi',

and if we put

tH = 1/Ui = HiM, Mi' = 1/Ui' = Hi'R,

then

Ui'-U+Fh
where F\ denotes the refracting power of the lens. Let the

distance of the primary principal point (H) of the eye from

the secondary principal point (Hi
7

) of the lens be denoted

by c, that is, c = Hi'H; then since a = ui'—c, where a de-

notes the far point distance of the eye, the following ex-

pression for the static refraction (A = l/a) may be derived

immediately:

A Ui+Ft
l-c(Ui+Fi)

'

In case the axial object-point M is infinitely far away, the

lens is called a correction-glass, because it enables the pas-

sive ametropic eye to see distinctly a very distant object

on the axis of the lens, so that to this extent the lens inter-

posed in front of the eye endows it with the characteristic

faculty of an unaccommodated, naked, emmetropic eye.

The condition that M shall be infinitely distant is Ui = 0;

and hence the relation between the static refraction of the

eye and the refracting power of a correction-glass is given as

follows

:

a.* Fl=,

A
1-c.Fi 1+c.A

If the distance c between the correction-glass and the eye is

neglected entirely, then Fi = A, that is, the power of the

correction-glass is approximately equal to the static refrac-

tion of the eye. The distance c, which must be expressed

in meters in case the magnitudes denoted by F\ and A are

given in dioptries, is always a comparatively small magni-

tude, which in actual spectacle glasses is comprised between

0.008 and 0.016 m.; so that if, without neglecting c entirely,
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we neglect only the second and higher powers thereof, the

formulae above may be written in the following convenient

approximate forms:

A = F 1(l+c.F 1 ), F^Ail-cA);
which for nearly all practical purposes will be found to be

sufficiently accurate.

f^

Fig. 199.—Correction of myopia with concave spectacle-glass.

The condition that a spectacle-lens shall be a correction-

glass may be expressed simply by saying that the second focal

point (Fi
r

) of the glass must coincide with the far point (R) of

the eye. Thus, in case of a myopic eye the correction-glass

Fig. 200.—Correction of hypermetropia with convex spectacle-glass.

will be concave (Fig. 199) and in case of a hypermetropic

eye it will be convex (Fig. 200).

Instead of describing the power of a spectacle glass by

means of its refracting power, it is really more convenient

and logical to express it in terms of its vertex refraction (V),

as defined in § 128. If the vertex of the lens which lies next

the eye is designated by L, and if the distance of the eye from

the glass is denoted by k, that is, if we put fc = LH, then,

since the points designated by Fi' and R must be coincident,
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v = a+k, where a denotes the "back focus" of the lens, that

is, v=l/7 =LF/ = LR; and hence:

v
, v- A

l-k.V 1+k.A'
or approximately:

A = V(l+k.V), V=A(l-kA).
It may be seen from the above formulae how the power of a

correction-glass depends essentially on the location of the

glass in front of the eye. The distance k, being referred to a

tangible, external point of the glass, is more easily measured

than the interval denoted by c.

155. Visual Angle.—The apparent size of an object, as

was explained in § 10, is measured by the visual angle co

which it subtends at the eye; thus, if the vertex of this angle

is designated by and if ?/ =MQ denotes a diameter of the

object at right angles to the line of vision, the apparent size

of the object in the direction of this dimension is co = Z MOQ.
Accordingly, if the distance of the object from the eye is de-

noted by z, that is, if 2= 0M, then tana? =y/z. As the im-

mobile eye looking in a fixed direction can see distinctly

only that comparatively small portion of the object whose

image falls on the sensitive part of the retina in the immedi-

ate vicinity of the fovea centralis (§ 145), the rays concerned

in the production of the retinal image in this so-called case

of " indirect vision" may be regarded as paraxial rays. Ac-

cordingly, the value of the angle co in radians may be sub-

stituted here for the tanco, so that we may write:

cc = y/z= y.Z,

where Z = l/z. On the assumption that y is reckoned as

positive, a negative value of the angle co indicates that the

object is real and therefore in front of the point O where the

eye is supposed to be.

The exact meaning to be attached to the visual angle co

will depend, of course, on the precise location with respect

to the eye of the vertex of this angle. To be sure, so long as

the object is quite remote from the eye, as is often the case,
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it will not generally be necessary to define particularly the

position of the vertex O of the visual angle. For example,

to take a somewhat extreme instance, the apparent size of

the moon will not be sensibly altered by removing the ver-

tex of the visual angle as much as a mile or more away from

the eye. And, in general, provided the object is not less

than, say, 10 meters away, it will be sufficient to know that

the vertex of the visual angle is in the eye without specifying

its position more exactly. On the other hand, especially

when the eye has to exert its power of accommodation in

order to focus the object, it is sometimes a matter of much
importance to define the visual angle with the utmost pre-

cision. In such a case several meanings of this term are to

be specially distinguished. For example, when the vertex

of the visual angle is at the primary principal point of the

eye, it is called the principal point angle (coh = ^MHQ), so

that we may write

:

ccH = ij!u = y.U,

where w=l/[/=HM denotes the distance of the object from

the primary principal point. Similarly, the so-called focal

point angle (coF = ZMFQ) is the angle subtended by the

object at the primary focal point of the eye; and hence:

uF = y/x = y.X,

where x=l/I=PM denotes the distance of the object from

the primary focal point of the eye.

According to the definitions of these angles and the rela-

tions between the magnitudes denoted by X, U and Z, as

given in § 152, we may write therefore:

co : cor- : coF =Z : U : X
= 1 :(l+b.U) :(l+g.X)

= (1-6.Z) :1 :(1-X/F)
= (l-g.Z):(l+U/F):l;

where F denotes here the refracting power of the eye when

it is accommodated for the point M.
The apparent size of an object may be measured also at

other points of the eye, for example, at the center of the
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entrance-pupil, at the anterior nodal point, at the center of

rotation, etc. The center of rotation or eye-pivot is the

point of reference in the estimate of the apparent size of an

object in the case of ordinary so-called "direct vision" with

the mobile eye, when the gaze is directed in quick succession

to the different parts of an extended object. Especially, in

viewing an image through an optical instrument, it is nearly

always desirable, if practicable, to adjust the eye in such a

position that the center of rotation coincides with the center

of the exit-pupil of the instrument, so as to command as

large an extent of the field of view of the image-space as

possible. Anyone who has ever tried to look through a key-

hole in a door will realize how the field of view would have

been widened if the eye could have been placed in the hole

itself.

156. Size of Retinal Image.—If the eye is accommodated

to see an object y situated at a distance u ( = 1/U) from its

primary principal point, the size of the image (y
f

) formed on

the retina is given by the relation:

y.U=y'.A',

where A' = n'/a' denotes the reciprocal of the reduced length

of the eye-axis measured from the secondary principal point

of the eye. Since 2/.J7=coH (§155), the above equation

may be put in the following form

:

coh n'
'

Since the positions of the principal points remain sensibly

stationary in the act of accommodation (§ 150), the reduced

length of the eye-axis (a'jn
f

) may be considered as constant

in the same individual. And hence the peculiar significance

of the principal point angle consists in the fact that, ac-

cording to this formula, this angle (coH ) may be taken as

a measure of the size of the retinal image {y') which is in-

dependent of the state of accommodation of the eye. Thus,

for a given individual, all objects which have the same ap-
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parent size as measured at the principal point of the eye will

produce retinal images of equal size.

On the other hand, since y'.F=y.X=aiF (§ 155), it ap-

pears that, for a given value of the refracting power (F),

the size of the image on the retina of the eye is proportional

to the focal point angle. And since the variations of the re-

fracting power are, generally speaking, independent of axial

ametropia (§ 153), the focal point angle will be particularly

useful in comparing the apparent size of an object as seen

by different individuals under the same external conditions.

157. Apparent Size of an Object seen Through an Op-
tical Instrument.—Let the principal points of the optical

instrument be designated by H, IT (Fig. 201); and for the

Fig. 201.—Apparent size of object seen through an optical

instrument.

sake of simplicity, let us assume that the instrument is sur-

rounded by air so that the straight lines HQ, H'Q' joining

the principal points with corresponding points of object and

image will be parallel; and let ?/ = MQ, ?/' = M'Q' denote the

linear magnitudes of object and image, respectively. Let

the distance of the image from the eye be denoted by z=

O'M', where O' designates the position of the eye on the

axis. Then the apparent size of the image will be

co=2/'.Z,

where co = ZM'0'Q' (expressed here in radians) andZ = l/z.

The angle co may be increased by reducing the distance be-
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tween the image and the eye, that is, by increasing Z; but

this distance cannot be diminished below the near point

distance of the eye, because then distinct vision would not

be possible for the naked eye.

If the distances of object and image from the principal

points are denoted by u and u', that is, if w=HM, w' = H'M',

then

y'.U'=y.U,

where U=l/u, U'= l/u'; and hence

In general (except when the rays undergo an odd number

of reflections) , the sign of Z as here defined will be negative,

and therefore the sign of co will depend on the sign of the

ratio U : U'. Accordingly, if object and image lie on the

same side of their corresponding principal points, the sign

of co will be negative, that is, the image will be erect.

Let the distance of the eye from the instrument be de-

noted by c = H'0 /

; then since u' = c+z, we may write:

U' =
Z

.

1+c.Z
Accordingly, if the refracting power of the instrument is

denoted by F, so that U=Uf—F,we may write also:

F-Z(l-c.F)
1+c.Z

Introducing these expressions, we obtain therefore the fol-

lowing formula for the apparent size of the image:

a>=-y\F-Za-c.F)\ .

Thus, we see that the apparent size of the image may be

varied in one of two ways, either by changing the position

of the eye (that is, by varying c) or else by displacing the

object so that Z is varied. There are two cases of special

practical importance, namely: (1) When the eye is adjusted

so that l — c.F= 0, and (2) When the object is focused so

that Z = 0. In both cases the second term inside the large

brackets vanishes, and hence oo = —y.F. The condition
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c= — l/F means that the eye is placed at the second focal

point (F') of the instrument (which might easily be practi-

cable if the optical system were convergent) ; so that under

such circumstances the apparent size of the image would be

the same for all positions of the object, because evidently

the highest point (Q') of the image will always lie on the

straight line which crosses the axis at the second focal point

at the constant angle 6= —y.F. On the other hand, the

condition Z = means simply that the object lies in the

first focal plane of the instrument. Now this is the natural

adjustment for a normal, unaccommodated, emmetropic

eye, because then the rays flow into the eye in cylindrical

bundles. This is the reason why the image produced by

the object-glass of a telescope or microscope is usually fo-

cused in the primary focal plane of the eye-piece or ocular.

Accordingly, when Z = 0, the apparent size of the image

will be independent of the position of the eye.

An experienced observer who wishes to obtain the best

results with an optical instrument will ordinarily adjust it

to his eye in such a way that the image can be seen distinctly

without his having to make an effort of accommodation.

This will be the case if the image is formed at the far point

(R) of the eye (§ 148). If, therefore, the static refraction

of the eye is denoted by A (§151), then (assuming that the

point O' in Fig. 201 is coincident with the anterior principal

point of the eye) we may put Z = A; and hence the apparent

size of an object as seen in an optical instrument by an eye

with relaxed accommodation is given by the expression:

coK =-y\F-A(l-c.F)\ .

Thus, it is evident how the apparent size of the image de-

pends not only on the refracting power of the instrument,

but essentially also on the adjustment and idiosyncrasies

of the eye of the individual who looks through it.

It may be remarked that these formulae have been derived

on the tacit assumption that the eye is at rest, and conse-

quently only a small portion of the external field is sharply
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in focus at the sensitive part of the retina. Otherwise, we

should have had to write tanco instead of co; nor should we

have been justified in assuming that the effective rays were

paraxial. If the eye turns in its socket to inspect the image,

the apparent size of the image will depend essentially on

the angular movement of the eye, and in this case the visual

angle must be measured at the center of rotation of the eye.

These are considerations that are too often overlooked in

discussions of this kind.

158. Magnifying Power of an Optical Instrument Used

in Conjunction with the Eye.—An object may be so remote

that its details are indistinguishable, or, on the other hand,

it may be so close to the eye that not even by the greatest

effort of accommodation can a sharp image of it be focused

on the retina. Under such circumstances one has recourse

to the aid of a suitable optical instrument whereby the ob-

ject is magnified to such an extent that the parts of it which

were obscure or entirely invisible to the naked eye will be

revealed to view. The magnifying power is usually expressed

by an abstract number M, which in the case of an optical

instrument on the order of a microscope is defined to be the

ratio of the apparent size of the image as seen in the instrument

to the apparent size of the object as it would appear at the so-

called "distance of distinct vision." This latter term is a

somewhat unfortunate form of expression for several rea-

sons, not only because the distance at which an object is

ordinarily placed in order to be seen distinctly is different

for different persons, but because the same person, accord-

ing to the extent of his power of accommodation, usually

possesses the ability of seeing distinctly objects at widely

different distances. The expression appears to have arisen

from a confusion of ideas, and its origin may probably be

traced to the fact that even nowadays many people have

difficulty in conceiving how the eye can be " focused for

infinity," although, indeed, as has been explained, that is

to be regarded as the natural state of the normal eye in re-
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pose. However, the phrase has become too deeply rooted

in optical literature ever to be eradicated, and no harm will

be done by continuing to use it, provided it is not taken

literally, but is considered merely as the designation of a

more or less arbitrary conventional projection-distance.

Accordingly, if the so-called " distance of distinct vision"

is denoted by I, the apparent size of the object (y) as seen

at this distance from the eye will be —y/l, and hence if the

apparent size of the image in the instrument is denoted by

co, the magnifying power, as above defined, will be:

y
The actual value of this conventional distance I is usually

taken as 10 inches or 25 centimeters, which is large enough

for the convenient accommodation of most human beings

who are not already past the prime of life and yet not so

large that the size of the image on the retina differs much
from its greatest dimensions. If distances are all measured

in meters, the conventional value of the magnifying power

will be given, therefore, by the formula:

M= "

The explanation of the minus sign in front of the fraction

is to be found in the mode of reckoning the visual angle co,

which, as we have pointed out (§ 157), is negative in case

the image of the object y is erect, as, for example, with an

ordinary convex lens used as a magnifying glass. Thus,

according to the above formula, a positive value of the mag-

nifying power means magnification without inversion. Or-

dinarily, what is meant by the magnifying power of an op-

tical instrument is the value of this abstract number M;
which gives the ratio of the sizes of the retinal images when
an emmetropic eye views one and the same object, first, in the

instrument without effort of accommodation, and then with-

out the instrument with an accommodation of four dioptries.

If the expression for the visual angle co which was ob-
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tained in § 157 is introduced here, we shall derive, therefore,

the following formula for the magnifying power (M) in terms

of the refracting power (F) of the instrument, the distance

(c) of the eye from the instrument, and the distance (2=

1/Z) of the image (y
f
) from the eye:

M = l\F-Z(l-c.F)\.

This expression is really a measure of the individual mag-

nifying power, since it involves not merely the instrument

itself but the characteristic peculiarities of the eye of the

observer. In order to obtain a measure of the absolute mag-

nifying power of the instrument, the second term inside the

large brackets must be made to vanish. Thus, if the object

is placed in the primary focal plane, so that the image is

infinitely distant, then Z= 0, and now M = l.F denotes the

absolute magnifying power. If 1 = 0.25 meter, then F= 4M;
and usually, therefore, when we say that the magnifying

power of a lens or microscope is M, this means simply that

its refracting power is equal to 4M dioptries.

If the image in the instrument is formed at the " distance

of distinct vision" (I), then Z=—l/l. and

M = l + (l-c)F.

The distance (c) between the instrument and the eye is usu-

ally small in comparison with I, so that it is often entirely

neglected. Assuming that (l—c) is positive, we may say

that in a convergent optical system (F>0), the object will

appear magnified (M>1); whereas in a divergent optical

system (F<0), the object appears to be diminished in size

(M<1).

In order to avoid the use of an arbitrary projection-

distance, (Z), Abbe proposed to define the magnifying power

as the ratio of the apparent size ( 00) of the image in the instru-

ment to the actual size (y) of the object (compare with Abbe's

definition of focal length, § 122) ; so that if this ratio is de-

noted by P, then

^ COp=--.
y
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This measure of the magnifying power is not an abstract

number like M, but a quantity of the same physical dimen-

sions as the refracting power of the instrument. The two

definitions are connected by the simple relation

M = Z.P;

so that if we put 1= 0.25 m., the value of P will be obtained

by multiplying M by the number four (P = 4M). Thus, for

example, in the case of a convex lens of refracting power F
used as a magnifying glass, if the object is placed in the first

focal plane, we have P = F.

159. Magnifying Power of a Telescope.—In the case of

a telescope, which is an instrument for magnifying the ap-

parent size of a distant object, neither of the definitions of

magnifying power given in the foregoing section is appli-

cable. An infinitely distant object (like the moon, for ex-

ample) can be seen distinctly by an emmetropic eye without

any effort of accommodation, but its apparent size may be

so minute that the distinguishing features cannot be made

out by the naked eye. This same eye looking at the object

through a telescope will see an infinitely distant image of

it, but presented to the eye under a larger visual angle, so

that it appears magnified. Essentially, a telescope may be

regarded as a combination of two optical systems, one of

which—the part pointed towards the object—is a con-

vergent system, generally of relatively long focus and large

aperture (so as to intercept a large quantity of light), called

the object-glass; while the other, composed of the lenses

next the eye, and called therefore the ocular or eye-piece,

may be a convergent or divergent system depending on the

type of telescope. The object-glass which is at one end of

a large tube forms a real inverted image of the object in its

second focal plane or not far from it; and this image is in-

spected through the ocular, which is usually fixed in a smaller

tube inserted in the larger one so that the focus can be ad-

justed to suit different eyes and different circumstances.

A simple schematic telescope may be regarded as composed
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of two thin lenses, one of which, of focal length /i (refracting

power Fi) acts as the object-glass while the other, of focal

length f2 (refracting power F2) performs the part of the oc-

ular. When the telescope is adjusted for an emmetropic,

unaccommodated eye, the second focal point (F/) of the ob-

ject-glass coincides with the first focal point (F2 ) of the ocular;

and hence the focal length of the entire system is infinite

(/= oo or F= 0), that is, the system is afocal or telescopic

(§125). In this case the telescope is said to be in normal

adjustment.

The first telescope appears to have been invented by one

of two Dutch spectacle-makers named Zacharias Jansen
and Franz Lippershey (circa 1608). Galileo (1564-

1642), having heard of this Dutch toy, was led to experiment

To J at oc

To J'atco

Fig. 202.—Diagram of simple Dutch or Galilean telescope.

with a combination of two lenses and he soon succeeded

(1609) in making a telescope with which he made a number
of renowned astronomical discoveries. The so-called Dutch

or Galilean telescope, represented schematically in Fig. 202,

consists of a large convex object-glass (Ai) combined with

a small concave eye-piece (A2), which intercepts the con-

verging rays before they come to a focus and adapts them to

suit the eye of the observer. The other type of telescope

(Fig. 203) is composed of two convex lenses. It is called the

astronomical telescope or Kepler telescope, because the idea
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occurred first to John Kepler (1611); but the first instru-

ment of this kind was made by the celebrated Jesuit father,

Christian Scheiner (1615), who also conceived the idea

of using a third lens to erect the image as is done in the so-

called terrestrial telescope.

If the telescope is in normal adjustment, then from each

point J of the infinitely distant object there will issue a bundle

Fig. 203.—Diagram of simple astronomical telescope.

of parallel rays whose inclination to the axis of the telescope

may be denoted by 6. Falling on the object-glass, these

rays are converged to a focus at a point P lying in the com-
mon focal plane of object-glass and eye-piece; and conse-

quently they will emerge from the eye-piece and enter the

eye as a bundle of parallel rays proceeding from the infi-

nitely distant image-point J' in a direction which makes an

angle 6' with the axis. The slope-angles 6 and 6' have

a constant relation to each other, as may easily be shown;

for from the right triangles F/AiP and F2A2P (Figs. 202

and 203), where AiF/ = AiF2 =/i, ZFi'AiP= 0, and F2A2 =
Fi'A2 =/2 , ZF2A2P= 6', we obtain immediately:

tan 0' /i— = —- = constant.
tan Q j 2
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Now the angles denoted here by 6 and 6
f
are the measures

of the apparent sizes of corresponding portions of the in-

finitely distant object and image, and the ratio of these

angles (or of their tangents) is defined to be the magnifying

power of the telescope; so that if this ratio is denoted by M,
we shall have:

h
Accordingly, the magnifying power of a telescope focused

on an infinitely distant object and adjusted for distinct

vision for an unaccommodated, emmetropic (or corrected

ametropic) eye is measured by the ratio of the focal lengths

of the objective and ocular. In the astronomical telescope

/i and /2 are both positive, and consequently the ratio M is

negative, which means that the image is inverted ; whereas in

the Dutch telescope /i is positive and f2 is negative, and
hence*M is positive, that is, the final image is erect.

Another convenient expression for the magnifying power

of a telescope, as defined above, may easily be obtained.

All the effective rays which fall on the object-glass will after

transmission through the instrument pass through a certain

circular aperture called the eye-ring (or Ramsden circle),

which is the image of the object-glass in the ocular. If the

object-glass is brightly illuminated (for example, if the tele-

scope is pointed towards the bright sky), this image appears

as a luminous disk floating in the air not far from the ocular

and can easily be perceived by placing the eye at a suitable

distance. In the astronomical telescope the eye-ring is a

real image which can be received on a screen, and in this

instrument it usually acts as the exit-pupil (§ 134). In the

case of the Dutch telescope the eye-ring is a virtual image

on the other side of the ocular from the eye; and generally

its effect is to limit the field of view in the image-space, that

is, its office is that of the exit-port of the system (§§ 137,

138). Now if the telescope is in normal adjustment, then

the distance of the ocular from the object-glass is equal to
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the algebraic sum (/1+/2) of the focal lengths of the two
components ; and it may easily be shown that

M _ /1 _ diameter of object-glass

J2 diameter of eye-ring

The advantage of this latter form of expression is to be

found in the fact that even if the telescope is not in normal

adjustment, it may still be considered in a certain sense as

a measure of the magnifying power of the instrument. Sup-

pose, for example, that the optical system is not telescopic,

so that the interval between the second focal point (Fi') of

the object-glass and the first focal point (F2) of the ocular

is not negligible, as frequently happens in focusing the eye-

piece to suit the eye of the individual, especially if the object

itself is not infinitely distant. Consider a ray which is di-

rected originally from the extremity of the object towards

a point O on the axis of the telescope and which emerges

so as to enter the eye at the conjugate point O'. If the angles

which the ray makes with the axis at O and O' are denoted

by 6 and 6'', respectively, then the ratio tan#' : tan# will

be a measure of the magnifying power of the telescope for

this adjustment and position of the eye. But according to

the Smith-Helmholtz formula (§§ 86 and 118), since the

telescope is surrounded by the same medium on both sides,

we shall have here

:

tan#' : tand = y : y',

where y and y' denote the linear magnitudes of an object and

its image in conjugate transversal planes at O and O' (the

planes of the pupils). Now if the point O' is at the center

of the eye-ring, the point O will lie at the center of the object-

glass, and the ratio y : y' will be equal to the ratio of the

diameters of object-glass and eye-ring. Hence, provided

the eye is placed at the eye-ring, the magnifying power of the

telescope will be

lvr _ diameter of object-glass

diameter of eye-ring

In an astronomical telescope the best adjustment for com-
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manding a wide extent of the field of view is to place the eye

with its center of rotation at the center of the eye-ring, but

in a Dutch telescope this is not practicable, because the eye-

ring is not accessible.

In order to obtain a general formula for the magnifying

power of a telescope, let us fix our attention on the inverted

image of the object which is formed by the object-glass.

If u=l/U denotes the distance of the object from the object-

glass and if q denotes the linear size of the image, the appar-

ent size of the object as seen from the center of the object-

glass will be

tan0=q(U+Fi),

where F\ denotes the refracting power of the object-glass.

On the other hand, according to the formula deduced in

§ 157, the apparent size of the image seen in the telescope

will be
,

ttmd'=-q{F2-Z(l-c.F2)} ,

where F2 denotes the refracting power of the ocular, z—\\Z
denotes the distance of the image in the ocular from the eye,

and c denotes the distance of the eye from the ocular itself

(or from its second principal point). Accordingly, we obtain

the following expression for the magnifying power of the

telescope:

tanfl^ F2-Z(\-c.F2)

tanfl U+Fi

which is applicable to all cases. If the object is infinitely

distant, then £7 = 0; and if the telescope is in normal adjust-

ment, then the image is also infinitely distant, that is, Z= 0,

andM=-F2/Fi.
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PROBLEMS

1. If the refracting power of a correction spectacle-glass

is +10 dptr., and if the distance of the anterior principal

point of the eye from the second principal point of the glass

is 12 mm., find the static refraction of the eye.

Ans. +11.36 dptr.

2. Take the refracting power of the eye equal to 58.64 dptr.,

the distances of the principal points from the vertex of the

cornea as 1.348 and 1.602 mm., and the index of refraction

of the vitreous humor equal to 1.336. If the refracting power

of a correction spectacle-glass, whose second principal point

is 14 mm. from the anterior principal point of the eye, is

+ 5.37 dptr., show that the total length of the eye-ball is

26.5 mm.
3. In Gtjllstrand's schematic eye, with accommodation

relaxed, the distance from the vertex of the cornea to the

point where the optical axis meets the retina is 24 mm. The
other data are the same as those given in No. 2 above. Find

the position of the far point and determine the static refrac-

tion.

Ans. The far point is 99.34 cm. from the vertex of the

cornea, and the static refraction is + 1 .008 dptr.

4. In Gullstrand's schematic eye in its state of maxi-

mum accommodation the distances of the principal points

from the vertex of the cornea are 1.7719 and 2.0857 mm., and

the refracting power is 70.5747 dptr. The length of the eye-

ball is 24 mm., as stated in No. 3. Find the position of the

near point and determine the dynamic refraction of the

eye.

Ans. The near point is 10.23 cm. from the vertex of the

cornea; the dynamic refraction is —9.609 dptr. Accordingly,

with the aid of the result obtained in No. 3, we obtain for

the amplitude of accommodation 10.62 dptr.

5. Taking the refracting power of the eye as equal to

59 dptr., show that the size of the retinal image of an object
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1 meter high at a distance of 10 meters from the eye will be

1.7 mm.
6. The apparent size of a distant air-ship is one minute of

arc. Taking the refracting power of the eye as equal to

58.64 dptr., show that the size of the image on the retina

will be 0.00495 mm.
7. What is the magnifying power of a convex lens of focal

length 5 cm.? Ans. 5.

8. A myope of 10 dptr. uses a convex lens of focal length

5 cm. as a magnifying glass. Find the individual magnify-

ing power, neglecting the distance of the eye from the glass.

Ans. 7|.

9. In the preceding example, what will be the individual

magnifying power of the same glass in the case of an hyper-

metrope of 10 dptr.? Ans. 2£.

10. A certain person cannot see distinctly objects which

are nearer his eye than 20 cm. or farther than 60 cm. Within

what limits of distance from his eye must a concave mirror

of focal length 15 cm. be placed in order that he may be able

to focus sharply the image of his eye as seen in the mirror?

Ans. In order to see a real image of his eye, the distance

of the mirror must be between 43.23 cm. and 78.54 cm.; in

order to see a virtual image, the distance of the mirror must

be between 6.97 cm. and 11.46 cm.

11. The magnifying power of a telescope 12 inches long

is equal to 8: determine the focal lengths of object-glass

and eye-glass (1) when it is an astronomical telescope and

(2) when it is a Galileo's telescope.

Ans. (1) /i= +10|, /2=+l| inches; (2)/i=+13|,

/2 = — ly inches.

12. The focal lengths of the object-glass and eye-glass of

an astronomical telescope are /1 and /2) and their diameters

are 2hi and 2h2) respectively. Show that the radius of the

stop which will cut off the " ragged edge" (§ 138) is equal to

M2—M1
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13. A telescope is pointed at an infinitely distant object,

and the eye-piece is focused so that the image is formed at

the distance I of distinct vision of the eye. If the distance of

the eye from the eye-piece is neglected, show that the mag-

nifying power is M= —/i(7+/2)/Z./2 ,
where /i, f2 denote the

focal lengths of the object-glass and eye-glass.

14. A Ramsden ocular consists of two thin convex lenses

each of focal length a separated by an interval equal to 2a/3.

Show that the magnifying power of an astronomical tele-

scope furnished with a Ramsden ocular is 4/i/3a, where /i

denotes the focal length of the object-glass.

15. The object-glass of an astronomical telescope has a

focal length of 50 inches, and the focal length of each lens

of the Ramsden ocular is 2 inches. The distance between

the two lenses in the ocular is ^ inch. Show that the dis-

tance between the object-glass and the first lens of the oc-

ular is 50.5 inches, and that the magnifying power is equal

to i

r-
16. If a Galileo's telescope is in normal adjustment,

show that the angular diameter of the field of the image as

measured at the vertex of the concave eye-glass is 2tanY' =
— 2/ii/(/i+/2), where hi denotes the radius of the object-glass

and /i, /2 denote the focal lengths of object-glass and eye-

glass.

17. The focal length of the object-glass and eye-glass of

an astronomical telescope are 36 and 9 inches, respectively.

If the object is infinitely distant and if the eye is placed in

the eye-ring at a distance of 9 inches from the image, show

that the magnifying power is equal to 3.

18. 'The magnifying power of a simple astronomical tele-

scope in normal adjustment is M, and the focal length of the

object-glass is /i. Show that if the eye-glass is pushed in a

distance x and the eye placed in the eye-ring, the magnifying

power will be diminished by x.M/fi.

19. An astronomical telescope is pointed towards the sun,

and a real image of the sun is obtained on a screen placed
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beyond the eye-lens at a distance d from it. If the diameter

of this image is denoted by 26, and if the apparent diameter

of the sun is denoted by 2 6, show that the magnifying power

of the telescope is M = 6. cot 6/d.

20. The eye is placed at a distance c from the eye-glass of

a Galileo's telescope in normal adjustment. The length

of the telescope as measured from the object-glass to the

eye-glass is denoted by d, the radius of the object-glass is

denoted by hi, and the radius of the pupil of the eye is de-

noted by g (it being assumed that g is less than the radius of

the eye-glass). Show that the semi-angular diameters of

the three portions of the field of view on the image-side are

given by the following expressions

:

hi—gM , h , hx+gM

where M denotes the magnifying power of the telescope.



CHAPTER XIV

DISPERSION AND ACHROMATISM

160. Dispersion by a Prism.—When a beam of sunlight is

admitted into a dark chamber through a small circular hole A
(Fig. 204) in the window shutter, a round spot of white light

will be formed on a vertical wall or screen opposite the win-

dow, which will be, indeed, an image of the sun of the same
kind as would be produced by a pinhole camera (§ 3) ; its

Fig. 204.—Prism dispersion: Newton's experiment.

angular diameter, therefore, being equal to that of the sun,

namely, about half a degree. In the track of such a beam
Newton inserted a prism with its refracting edge horizontal

and at right angles to the direction of the incident light;

whereupon the white spot on the screen vanished and in its

stead at a certain vertical distance above or below the place

that was first illuminated there was displayed an elongated

465
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vertical band or spectrum, exhibiting the colors of the rain-

bow in an endless variety of tints shading into each other by

imperceptible gradations. This spectrum was rounded at

the ends and its vertical dimension, depending on how the

prism was tilted, was about 4 or 5 times as great as its hori-

zontal dimension, the latter being equal to the diameter of

the spot of white light that was formed on the screen before

the interposition of the prism. For convenience of descrip-

tion, Newton distinguished seven principal or " primary"

colors arranged in the following order from one end of the

spectrum to the other, namely, red, orange, yellow, green,

blue, indigo,* and violet; of which the violet portion of the

spectrum is the longest and the orange the shortest. The

red end of the spectrum was the part of the image on the

screen that was least displaced by the interposition of the

prism.

This phenomenon was explained by Newton on the as-

sumption that ordinary sunlight is composite and consists

in reality of an innumerable variety of colors all blended

together; and that the index of refraction (n) of the prism,

instead of having a definite value, has in fact a different

value for light of each color, being greatest for violet and

least for red light and varying between these limits for light

of other colors.

The resolution of white light into its constituent colors

by refraction is called dispersion. If a puff of tobacco-smoke

is blown across the beam of light where it issues from the

prism, only the outer parts of the beam will show any very

pronounced color, because the central parts at this place will

* There has been much discussion as to what Newton understood

by the color which he named " indigo" and which lies somewhere be-

tween the blue and the violet. Indigo, as we understand it, is more

nearly an inky blue rather than a violet blue, more like green than like

violet; and hence it has been suggested that Newton's color vision

may have been slightly abnormal. In this connection see article en-

titled "Newton and the Colours of the Spectrum" by Dr. R. A. Hous-

toun, Science Progress, Oct. 1917.



160] Monochromatic Light 467

not have been sufficiently dispersed to exhibit their individ-

ual effects. At some little distance away from the prism the

entire section of the beam will be brilliantly colored.

Having pierced a small hole through the screen at that

part of it where the spectrum was formed (Fig. 205) , Newton
was able by rotating the prism around an axis parallel to

Fig, 205.

—

Newton's experiment with two prisms; showing that light of

a definite color traverses the second prism without further dispersion.

its edge to transmit rays of each color in succession through

the opening to a second prism placed with its edge parallel

to that of the first prism; and, agreeably to his expectations,

he found that while these rays were again deviated in tra-

versing the second prism, there was no further dispersion of

the light. This experiment demonstrated that the single

colors of the spectrum were irreducible or elementary and

not a mixture of still simpler colors, and that the light which

had been separated in this fashion from the beam of sun-

light was monochromatic light.

If all the various components of the incident light which

has been resolved by the prism are re-united again, the effect

will be the same as that of the light before its dispersion.
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The simplest way to achieve this result is to cause the rays

to traverse a second prism precisely equal to the first, but

inverted so that the dihedral angle between the planes of

the adjacent faces of the two prisms is equal to 180°, the

edges of the prisms being parallel. Indeed, if the two prisms

were placed in contact in this way, they would form a slab

of the same material throughout with a pair of plane parallel

faces, for which the resultant dispersion is zero; because the

colored rays would all emerge in a direction parallel to that

of the incident ray which was the common path of all these

Fig. 206.—Light is not dispersed in traversing a plate with
plane parallel faces surrounded by same medium on both
sides.

rays before they were separated by refraction at the first

face of the plate (Fig. 206).

Another and essentially different way of re-uniting the

colored rays is to converge them to a single point by means
of a so-called achromatic lens, as represented diagrammati-

cally in the accompanying drawing (Fig. 207); so that the

effect at the focus C where the colored rays meet is the same

as that of light from the source. Beyond C the rays sepa-

rate again, so that if they are received on a screen the same

succession of colors will be exhibited as before, only in the

reverse order. If some of the rays are intercepted before

arriving at C, the color at C will be the resultant effect of

the residual rays. The point B where the rays are separated

on entering the prism and the point C where they are re-

united by the lens are a pair of conjugate points with re-

spect to the prism-lens system.
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The solar spectrum which Newton obtained in his cele-

brated prism-experiments, described in 1672, had one serious

defect, due to the fact that the colors in it were not in reality

pure but consisted of a blending of two or more simple colors.

When the light passes through a round hole before falling

on the prism, the spectrum on the screen will be composed

of a series of colored disks, each one overlapping the one next

to it. The colors, therefore, are partly superposed on each

other, and the eye is so constituted with respect to color

vision that it cannot distinguish the separate effects and

Fig. 207.—Achromatic lens used to re-unite the colored light after it has
been dispersed by prism.

analyze them but obtains only a general resultant impression

of the whole.

Wollaston's experiments in 1802 differed essentially

from Newton's only in the form and dimensions of the beam
of sunlight that was dispersed by the prism, but this simple

modification represented a distinct advance in the mode of

investigation of the spectrum. Wollaston admitted the

sunlight through a narrow slit * whose length was parallel to

* Dr. Houstoun, in the article already referred to, calls attention

to the fact that in some of his prism-experiments Newton also em-

ployed an opening in the form of a narrow slit, and was aware of its

advantages with respect to the purity of the spectrum; for Newton
states that "instead of the circular hole," "it is better to substitute an

oblong hole shaped like a long Parallelogram with its length Parallel

to the Prism. For if this hole be an Inch or two long, and but a tenth
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the prism-edge; and in order to diminish still more the di-

vergence of the incident beam, a screen with a second slit

parallel to the first was interposed in front of the prism, as

represented in the accompanying diagram (Fig. 208). The

spectrum formed in this way is far purer than that obtained

with a round opening in the shutter. But a difficulty that

Fig. 208.—Pure spectrum obtained by causing sunlight to pass through two
narrow slits before traversing prism.

inheres in both methods arises from the fact that the image

formed by a prism is always virtual, and therefore a homo-

centric bundle of monochromatic divergent rays will nec-

essarily be divergent after traversing a prism, so that if

they are received on a screen they will illuminate a certain

area on it which is the cross-section of the ray-bundle and

not in any strict sense an optical image of the original source.

or twentieth part of an Inch broad or narrower; the Light of the Image,

or spectrum, will be as Simple as before or simpler, and the Image will

become much broader, and therefore more fit to have Experiments

tried in its Light than before." The fact that Newton did not dis-

cover the Fraunhofer lines of the solar spectrum (§ 161) is probably

to be explained on the supposition that his prisms were of an inferior

quality of glass and that possibly also the surfaces were not as highly

polished as they might have been.
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Consequently, if the source sends out light of different colors,

the effect on the screen will correspond to the sections of all

the bundles of colored rays, and since these sections will

overlap each other to a greater or less extent, the spectrum

will not be pure. The narrower the apertures of the bundles

of rays and the farther the screen is from the prism, the less

s

Fig. 209.—Pure spectrum obtained by slit, prism and achromatic lens.

will be the overlapping of the adjacent colors, and therefore

the purer the spectrum; but on the other hand, the less also

will be the illumination.

A much more satisfactory method consists in making these

divergent bundles of rays convergent by means of an achro-

matic convex lens, as represented in Fig. 209; whereby the

blue rays proceeding apparently from a virtual focus at B
are brought to a real focus on the screen at B', and, similarly,

the red rays are united at R\ The plane of the diagram

represents a principal section of the prism. The light orig-

inates in a luminous line or narrow illuminated slit at S par-

allel to the prism-edge, and the spectrum R'B' on the screen

consists of a series of colored images of this slit and is ap-

proximately pure, except in so far as the slit must necessarily

have a certain width. Moreover, in the case of a very nar-

row slit, there are certain so-called diffraction-effects (§ 7)

which are indeed of very great importance in any thorough

scientific discussion of the condition of the purity of the

spectrum.



472 Mirrors, Prisms and Lenses [§ 162

161. Dark Lines of the Solar Spectrum.—Wollaston
himself observed that the spectrum of sunlight was not ab-

solutely continuous, but that there were certain narrow gaps

or dark bands in it parallel to the slit. Fraunhofer (1787-

1826), with his rare acumen and experimental skill, was able

to obtain spectra of far higher purity than any of his prede-

cessors, and he discovered, independently, that the solar spec-

trum was crossed by a very great number of dark lines, the

so-called Fraunhofer lines, from which he argued that sun-

light was deficient in light of certain colors. Fraunhofer
counted more than 600 of these lines, but there are now
known to be several thousand. One great advantage of this

remarkable discovery, which Fraunhofer was quick to

realize, consists in the fact that these lines are especially

suitable and convenient for enabling us to specify particular

regions or colors of the spectrum, because each of them cor-

responds to a certain degree of refrangibility, that is, to a

perfectly definite color of light. An explanation of the origin

of the dark lines of the solar spectrum may be found in

treatises on physics and physical optics.

The dark lines are distributed very irregularly over the en-

tire extent of the solar spectrum. In some cases they are

sharp and fine and isolated; some of them are exceedingly

close together so as to be hardly distinguishable apart; others

again are quite broad and distinct. In order to describe

their positions with respect to each other, Fraunhofer se-

lected eight prominent lines distributed in the different

regions of the spectrum, which he designated by the capital

letters A (dark red), B (bright red), C (orange), D (yellow),

E (green), F (dark blue), G (indigo), and H (violet). This

notation is still in use, and has since been extended beyond

the limits of the visible spectrum.

162. Relation between the Color of the Light and the

Frequency of Vibration of the Light-Waves.—According to

the undulatory theory of light, a luminous body sets up

disturbances or " vibrations'' in the ether which are prop-
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agated in waves in all directions with prodigious velocities.

The velocity of light in the free ether is about 300 million

meters per second. When a train of light-waves traverses

a rectilinear row of ether-particles all lying in the same me-

dium, the distance between one particle and the nearest one

to it that is in precisely the same phase of vibration is called

the wave-length; and the number of waves which pass a

given point in one second or the frequency of the undulation

will be equal to the velocity of propagation of the wave

divided by the wave-length. The reciprocal of the frequency

will be the time taken by a single wave in passing a given

point, which is called the period of the vibration. If the

wave-length is denoted by X, the velocity of propagation

by v, the frequency by N, and the period by T=l/N, the

relations between these magnitudes is expressed as fol-

lows:

\ = v/N = v.T.

When ether-waves fall on the retina of the eye, they may
excite a sensation of light provided their frequencies are

neither too small nor too great, the limits of visibility being

confined to waves whose frequencies lie between about 392

and 757 billions of vibrations per second. Just as the pitch

of a musical note is determined by its frequency, so also the

sensation which we call color appears to be more or less in-

explicably associated with the frequency of the vibrations

of the luminiferous ether; so that to each frequency between

the limits named there corresponds a perfectly definite kind

of light or color. Absolutely monochromatic light due to

ether-waves of one single frequency of vibration is difficult

to obtain. In general, the light which is emitted by a lumi-

nous body is more or less complex, and the sensation which

it produces in the eye is due to a variety of impulses. The

yellow light which is characteristic of the flame of a Bunsen
burner when a trace of common salt is burned in it is a sen-

sation excited by the impact of two kinds of ether-waves

corresponding to the double D-line of the solar spectrum
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which have frequencies of about 509 and 511 billions of vi-

brations per second. Red light corresponds to the lowest

and violet light to the highest frequency.

It is known that the velocity of light of a given color de-

pends on the medium in which the light is propagated; and

it has also been established that the velocity of light in a given

medium depends on the color of the light. However, appar-

ently light of all colors is transmitted with equal velocities

in vacuo; and also in air, on account of its slight dispersion,

there is practically no difference in the velocity of propaga-

tion of light of different colors.*

One reason for inferring that the frequency of the ether-

vibrations is the physical explanation of the phenomenon of

* "When white light enters a transparent medium, the long red waves

forge ahead of the green ones, which in their turn get ahead of the blue.

If we imagine an instantaneous flash of white light traversing a re-

fracting medium, we must conceive it as drawn out into a sort of linear

spectrum in the medium, that is, the red waves lead the train, the

orange, yellow, green, blue, and violet following in succession. The

length of this train will increase with the length of the medium traversed.

On emerging again into the free ether the train will move on without

any further alteration of its length.

"We can form some idea of the actual magnitudes involved in the

following way. Suppose we have a block of perfectly transparent glass

(of ref. index 1.52) twelve miles in thickness. Red light will traverse

it in 1/10000 of a second, and on emerging will be about 1.8 miles in

advance of the blue light which entered at the same time. If white

light were to traverse this mass of glass, the time elapsing between the

arrival of the first red and the first blue light at the eye will be less than

1/6000 of a second. Michelson's determination of the velocity of light

in carbon bisulphide showed that the red rays gained on the blue in

their transit through the tube of liquid. The absence of any change of

color in the variable star Algol furnished direct evidence that the blue

and red rays traverse space with same velocity. In this case the dis-

tance is so vast, and the time of transit so long, that the white light

coming from the star during one of its periodic increases in brilliancy

would arrive at the earth with its red component so far in advance of

the blue that the fact could easily be established by the spectro-

photometer or even by the eye."—R. W. Wood: Physical Optics,

Second Edition (New York, 1911), page 101.
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color is found in the fact that the color of monochromatic

light remains unaltered when the light passes from one me-

dium into another; and since the vibrations in the second

medium are excited and forced by those in the first medium,

it is natural to suppose that the vibration-frequency is the

same in both media.

Accordingly, it is the ratio

that remains constant in the transmission of monochromatic

light through different media. And hence if the velocities of

light in two media are denoted by v, v' , and if the wave-lengths

in these two media are denoted by X, X', then v/\ = v'/\'

or X/X' = ^/V/ that is, the wave-length of light of a given color

varies from medium to medium, and is proportional to the ve-

locity of propagation of light of that color in the medium in

question. Thus, the wave-length of yellow light is shorter

in glass than it is in air, because light travels more slowly in

glass than in air.

Generally, therefore, when we speak of the wave-length of

a given kind of light, wTe mean its wave-length measured in

vacuo. The lengths of waves of light are all relatively very

short, the longest, corresponding to the extreme red end of

the spectrum, being less than one 13-thousandth of a centi-

meter, and the shortest, belonging to the extreme violet end

of the visible spectrum, being less than one 25-thousandth

of a centimeter. These magnitudes are usually expressed in

terms of a special unit called a " tenth-meter" which is one

10-billionth part of a meter (10~10 meter) or in terms of a

"micromillimeter" which is equal to the millionth part of

a millimeter and for which the symbol fxfji is employed

(l/x/x = lCT6 mm.). Thus, the wave-lengths of light cor-

responding to the red and violet ends of the visible spectrum

are about 767/x/x and 397/^/x, respectively. The Fraun-

hofer line A is a broad, indistinct line at the beginning of the

red part of the spectrum, wave-length 759.4 fifi; the B-line
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in the red part corresponds to light of wave-length 686.7/x/x;

the C-line in the orange corresponds to light of wave-length

656.3/x/x; the D-line in the yellow is a double line, cor-

responding to light of wave-lengths 589.6/x/a and 589.0/x/a;

the E-line in the green corresponds to light of wave-

length 527. OfJLfx; the F-line in the blue corresponds to light

of wave-length 486.1^/a; the G-line in the indigo corre-

sponds to light of wave-length 430.8ju/x; and the H-line,

consisting of two broad lines in the violet, corresponds to

light of wave-lengths 396.8/x/x and 393.3/a/x.

163. Index of Refraction as a Function of the Wave-
Length.—Now according to the wave-theory of light, the

absolute index of refraction (n) of a medium for light of a

definite color is equal to the ratio of the velocity of light

in vacuo (V) to its velocity (y) in the medium in question

(§33); that is,

V
n =— .

v

Strictly speaking, therefore, the index of refraction of a me-

dium, without further qualification, is a perfectly vague ex-

pression, because each medium has as many indices of re-

fraction as there are different kinds of monochromatic light.

When the term is used by itself, it is generally understood

to mean the index of refraction corresponding to the D-line

in the bright yellow part of the solar spectrum, which is

characteristic of the light of incandescent sodium vapor.

Hence,

velocity of yellow light in vacuo
nD =

velocity of yellow light in the medium in question

wave-length of j^ellow light in vacuo

wave-length of yellow light in the given medium

In the following table the values of the indices of refraction

of several transparent liquids are given for light correspond-

ing to the Fraunhofer lines A, B, C, D, E, F, G, and H.
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For example, the dispersion of glass is greater than that of

water, and the dispersion of so-called flint glass is higher

that of so-called crown glass. In Fig. 210 are exhibited the

relative lengths of the different regions of the solar spectra

cast on the same screen under precisely the same cir-

cumstances by prisms of equal refracting angles made of

water, crown glass and flint glass. The length of the spec-

trum may be increased by shifting the screen farther from

asassa

Fig. 211.—Irrationality of dispersion.

the prism, and Fig. 211 shows the relative positions of the

Fraunhofer lines B, C, D, E, F, G and H, when the lengths

of the' spectra of the crown glass prism and the water prism

have been elongated in this manner until their lengths are

both equal to the length of the spectrum of the flint glass

prism for the interval between the Fraunhofer lines B and

H. The other lines in the three spectra do not coincide at all.

Moreover, it appears that the dispersion of water for the

colors towards the red end of the spectrum is relatively high,

whereas the dispersion of the flint glass is relatively high

towards the blue end. In the spectrum of flint glass the in-

terval between G and H, and in the spectrum of water the in-

terval between B and F, is greater than it is in either of the

other spectra. If the law of the variation of the index of re-
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fraction with the color of the light has been found empirically

for one substance, this will not afford any clue to the corre-

sponding law in the case of another substance. Diamond, for

example, is very highly refracting but shows comparatively

little dispersion, whereas flint glass which has a much lower

index of refraction gives a much higher dispersion; on the

other hand, fluorite has a low index of refraction and at the

same time a low dispersion. This phenomenon which is

characteristic of refraction-spectra is known as the irration-

ality of dispersion.

165. Dispersive Power of a Medium.—In the case of a

prism of small refracting angle fi the deviation is given by
the formula e = (n— 1)/3, as was explained in §60. Let

the letters P and Q be used to designate two colors, and let

nF and nQ denote the indices of refraction of the prism-

substance for these colors. If the angles of deviation are

denoted by eP and €q then eQ
— eF = (nQ—

n

F)/3, and, con-

sequently, for a thin prism the angular magnitude of the

interval in the spectrurn between the colors P and Q is pro-

portional to the difference of the values of the indices of re-

fraction. This difference (wq—nF) is called the partial dis-

persion of the substance for the spectrum-interval P, Q.

Thus, in the brightest part of the spectrum comprised be-

tween the Fratjnhofer lines C and F, the partial dispersion

is (nF—nc ). The deviation of a prism of small refracting

angle /3 for light corresponding to the D-line which lies

between C and F is €D = (nD— 1)/3, and since eF— €c =

(nF— nc) fi, we obtain

:

€f~ ec =
nF—nc

€d nD-l
This ratio of the angular dispersion of two colors to their

mean dispersion is called the dispersive power or the relative

dispersion of the substance for the two colors, which are usu-

ally red (C) and blue (F); so that the dispersive power of

an optical medium with respect to the visible spectrum may
be* defined to be the quotient of the difference (nF— nc)
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between the indices of refraction for red and blue light by

(nD — 1), where nD denotes the index of refraction for yellow

light. The values of the dispersive powers of the various

kinds of optical glass that are of chief practical importance

in the construction of optical instruments vary from about

~ to about ~; although there are compositions of glass

with values of the dispersive power not comprised within

these limits. Instead of assigning the value of the dispersive

power of a substance, it is more convenient to adopt Abbe's

method and employ the reciprocal of this function, which is

denoted by the Greek letter v, and which is known, there-

fore, as the i>-value of the substance; thus,

n?-nc
If the rvalue of one substance is less than that of another,

the dispersive power of the former will be correspondingly

greater than that of the latter.

It is this constant v that is the essential factor to be con-

sidered in the selection of different kinds of glass suitable to

be used in making a so-called achromatic combination of

lenses or prisms. Curiously enough, Newton persisted in

maintaining that the dispersion of a substance was propor-

tional to the refraction, which is equivalent to saying that

the dispersive powers of all optical media are equal; and,

consequently, he despaired of constructing an achromatic

combination of lenses which would refract the rays without

at the same time dispersing the constituent colors. This

condition, however, is an essential requirement in the object-

glass of a telescope, and it was just because Newton and his

followers believed that a lens of this kind was in the nature

of things unattainable that they expended their efforts in

the direction of perfecting the reflecting telescope in which

the convex lens was replaced by a concave mirror. On the

other hand, from the assumption that the optical system of

the human eye is free from color-faults (which is by no means

true), it was argued, notably by James Gregory in England
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(about 1670) and long afterwards by Euler in Germany

(1747), that Newton's conclusions as to the impossibility

of an achromatic combination of refracting media were er-

roneous. In fact, an English gentleman named Hall suc-

ceeded in 1733 in constructing telescopes which yielded

images free from serious color faults. Klingenstierna in

Sweden in 1754 demonstrated the feasibility of combining

a pair of prisms of different kinds of glass and of different re-

fracting angles so as to obtain, in one case, deviation without

dispersion and, in another case, dispersion without deviation.

But in its practical results the most important advance

along this line was achieved by the painstaking and original

work of the English optician John Dollond. Impressed

by the force of Klingenstierna's demonstration, he care-

fully repeated Newton's crucial experiment in which a glass

prism was inclosed in a water prism of variable refracting

angle; and having found that the results of this experiment

were exactly contrary to those stated by Newton, he was

led also to the opposite conclusion. After much persever-

ance Dollond had succeeded by 1757 in making achromatic

combinations of several different types, which produced a

more or less colorless image of a point-source on the axis of

the system. In its original form the combination consisted

of a double convex " crown glass" lens cemented to a double

concave " flint glass" lens. As a rule, the focus of the blue

rays will be nearer a convex lens and farther from a concave

lens than the focus of the red rays; and hence by combining

a convex crown glass lens of relatively lower refractive index

(shorter focus) and less dispersive power with a concave flint

glass lens of higher refractive index and higher dispersive

power, a resultant system may be obtained which still has

a certain finite focal length and in which at the same time

the opposed color-dispersions for two colors, say, red and

blue, are compensated.

166. Optical Glass.—Newton's error in supposing that for

all substances the dispersion was proportional to the index
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of refraction retarded the development of technical optics

for a long time to come. Although Dollond's achievement,

mentioned above, was one of far-reaching importance for the

practical construction of optical instruments, the great diffi-

culty in the way of utilizing and applying the principle was

to be found in the fact that the actual varieties of optical

glass at the disposal of the optician were exceedingly limited

in number; although from time to time systematic efforts

were made, notably by Fraunhofer (about 1812) in Ger-

many and by Faraday (1824), Harcourt (1834) and Stokes

(about 1870) in England, to remedy this deficiency, by dis-

covering and manufacturing new compositions of glass suit-

able for optical purposes. For a long time after Fraun-

hofer' s epoch the art of making optical glass was confined

almost exclusively to France and England. It was a for-

tunate coincidence that just about the time when E. Abbe

had reached the conclusion that no further progress in op-

tical construction could be expected unless totally new va-

rieties of optical glass were forthcoming, 0. Schott was

already beginning to experiment with new chemical combina-

tions and processes of manufacture in his glass works at Jena.

Thanks to the systematic and indefatigable efforts of these

two collaborators, who were also encouraged by the Prus-

sian government, the obstacle which had stood so long in the

way of the improvement and development of optical instru-

ments was at length triumphantly overcome by the successful

production of an entire new series of varieties of optical glass

with properties in some instances almost beyond the highest

expectations. The first catalogue of the Glastechnisches

Laboratorium at Jena was issued in 1885; which marked

the beginning of the manufacture of the renowned Jena glass,

to which more than to any other single factor the remarkable

development of modern optical instruments is due. From

that time to the present the great province of applied optics

may almost be said to have become a German territory.

The earlier so-called " ordinary" varieties of optical
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glass were silicates in which the basic constituents were

lime (crown glass) or lead (flint glass) combined with soda

(Na2C0 3 ) or potash (K2C0 3) or both. The newer kinds of

optical glass have been produced by employing a much
greater variety of chemical substances, including, in addi-

tion to those named above, hydrated oxide of aluminum
(A12 3,H20), barium nitrate (BaN 2 6), zinc oxide (ZnO),

etc., and boric acid (H3B03) or phosphoric acid which to a

greater or less extent replace the silica (Si02 ) in the older

types. Some of the new compounds have been found to

have slight durability, and for this and other reasons cer-

tain products formerly listed in the Jena glass catalogue

have been discontinued. At present, besides the old " or-

dinary" silicate crown and flint, the chief varieties are ba-

rium and zinc silicate crown, boro-silicate crown, dense

baryta crown, baryta flint, antimony flint, borate glass and

phosphate glass. The table on the following page contains

a list of certain varieties of Jena glass arranged in the order

of their ^-values. In the Jena glass catalogue the values of

the dispersion are given also for the spectrum-intervals

^d— ^a'> nF~ %>> nG'—nF (where A' and G' are the lines

corresponding to the wave-lengths 768 and 434yuju, re-

spectively) , together with the values of the so-called relative

partial dispersions obtained by dividing each of these num-
bers by the value of (nF—

n

c).

It has recently been proposed to describe an optical

glass by means of two numbers of 3 digits each, separated

by an oblique line. The first number gives the first three

figures after the decimal point in the value of nD ,
.while the

second number is equal to 10 times the value of v.

Thus, for example, the second glass in the table would be

described as crown glass No. 559/669.
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that any essential changes in the optical properties of glass

are to be obtained by the use of materials that have not al-

ready been tried. The index of refraction of all glasses at

present available are comprised between 1.45 and 1.96. The

mineral fluorite (calcium fluoride), which is used in the best

modern microscope objectives, has an index of refraction of

1.4338 and a rvalue of 95.4, so that in both respects it

lies beyond the limits attainable with glass. Other crystal-

line transparent minerals, notably rock crystal or quartz,

have already been employed in lens-systems, and any es-

sential improvement in the range of optical instruments

in the future is more likely to come from an adaptation of

these mineral substances than from the production of new
kinds of glass.

The difficulties involved in the manufacture of high-grade

optical glass are very great, and the utmost care has to be

exercised throughout every stage of the process. Not only

must the raw materials themselves be free from impurities as

far as possible, but the physical and chemical nature of the

fireclays used in the pots or crucibles also requires the most

painstaking care and preparation. The empty crucible is

dried slowly and then heated gradually for several days until

it comes to a bright red glow. Fragments of glass left over

from a previous melting and of the same chemical composi-

tion as the glass which is in process of making are introduced

into the pot and melted. The raw materials, pulverized and

mixed in definite proportions, are placed in the pot in layers

little by little at a time, and the pot, which is covered to

protect the contents from the furnace gases is maintained

at a sufficiently high temperature (between about 800 and

1000° C.) until the contents are all melted together. The

molten mass is usually full of bubbles of all sizes, and the

temperature must be raised until these are all gotten rid

of as far as possible. This entire process takes a longer or

shorter time depending on circumstances, say, from 24 to

36 hours or more. After skimming off the impurities on the
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surface, the mixture is allowed to cool gradually, and at the

same time it is kept constantly stirred in order to make the

glass as homogeneous as possible. This part of the process

requires constant care. When the glass in cooling has be-

come quite viscous, so that it is no longer possible to con-

tinue the stirring, it is allowed to cool very slowly over a

period of days or even weeks. Usually at the end of the

cooling process the solid contents of the pot will be found

to be broken into irregular fragments of optical glass in the

first stage of its manufacture. These fragments are care-

fully examined to see whether they are homogeneous and

above all free from striae; but the broken surfaces are so

irregular that this preliminary examination is necessarily

very imperfect. The pieces which pass muster in this way
are selected for molding and annealing. The lumps of glass

are placed in suitable molds made of iron or fireclay and

heated until the glass becomes soft like wax, so that it takes

the form of the mold usually with the aid of external press-

ure. The molded pieces are then annealed by being cooled

gradually for a week or longer. They are in the form of

disks or rectangular blocks of approximately the right size

for being made into lenses and prisms. At this stage the

glass has to be subjected to the most rigid testing to see if

it is really suitable for optical purposes. Two opposite faces

on the narrow sides are ground flat and parallel and polished

so that the slab can be inspected in the direction of its greatest

diameter. If any striae or other imperfections are found, the

piece will have to be rejected and melted over again. Even
in case there are no directly visible defects, there may be in-

ternal strains which will be revealed by examination with

polarized light. Slight strains are not always serious, but even

these will impair the image in a large prism or lens. These

strains can be gotten rid of by heating the glass to a tempera-

ture between 350 and 480° C, depending on the composition,

and then cooling very slowly and uniformly over a period of

about six weeks. It is very difficult to obtain pieces of op-
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tical glass which do not contain minute bubbles, and indeed

they are often to be found in the best kinds of glass.

Of course, the process as above described varies in details

according to the special nature of the glass, but enough has

been said to enable the reader to form some idea of the pa-

tience and skill which are required in the manufacture of

optical glass. A yield of 20 per cent, of the total quantity of

glass melted is considered good. The glass to be used for

photographic lenses has to fulfill the most exact requirements

and must be of the highest quality.

167. Chromatic Aberration and Achromatism.—Since the

index of refraction varies with the color of the light, and since

this function enters in one form or another in all optical cal-

culations, it is obvious, for example, that the positions of

the cardinal points of a lens-system will, in general, be differ-

ent for light of different colors; and that there will be a whole

series of colored images of a given object depending on the

nature of the light which it radiates, these images being all

more or less separated from each other and of varying sizes.

This phenomenon is called chromatic aberration, and unless

it is at least partially corrected, the definition of the resultant

image is very seriously impaired. In an optical system which

was absolutely free from chromatic aberration all these

colored images would coalesce into a single composite image

which, so far as the quality of the light was concerned, would

be a faithful reproduction of the object. But nothing at all

comparable to this ideal condition of achromatism can be

achieved in the case of any actual lens-system. In fact, the

term achromatism by itself and without any further explana-

tion is entirely vague, for an optical system may be achro-

matic in one sense without being at all so in other senses. For

example, the images corresponding to different colors may
all be formed in the same plane and yet be of different sizes,

or vice versa. Fortunately, however, the fact that it is im-

possible to achieve at best more than a partial achromatism

is not such a serious matter after all. The kind of achromat-



488 Mirrors, Prisms and Lenses [§ 167

ism which is adapted for one type of optical instrument may
be entirely unsuited to another type. Thus, it is absolutely

essential that the colored images formed by the object-glass

of a telescope or microscope shall be produced as nearly as

possible at one and the same place (achromatism with re-

spect to the location of the image), whereas, since the images

in this case do not extend far from the axis, the unequal

color-magnifications are comparatively unimportant. On
the other hand, in the case of the ocular systems of the same

instruments, the main consideration will be a partial achro-

matism with respect to the magnification or the apparent

sizes of the colored images. The object-glass of a telescope

must be achromatic with respect to the position of its focal

point, and the ocular must be achromatic with respect to its

focal length.

An optical system which produces the same definite effect

for light of two different wave-lengths, no matter what that

special effect may be, is to that extent an achromatic system.

A combination which is achromatic, even in its limited sense,

for a certain prescribed distance of the object will, in general,

not be achromatic when the object is placed at a different

distance. No lens composed of two kinds of glass only can

be achromatic for light of all different colors. It can be con-

structed, for example, so that it will bring the red and violet

rays accurately to the same focus at a prescribed point on

the axis; but then the yellow, green and blue rays will, in

general, all have different foci, some of which will be nearer

the lens than the point of reunion of the red and violet light

while others will lie farther away. Accordingly, when achro-

matism has been attained in the case of two chosen colors,

there will usually remain an uncorrected residual dispersion

or so-called secondary spectrum, which under certain circum-

stances may impair the definition of the image to such a

degree as to be very injurious and annoying. It is neces-

sary to abolish the secondary spectrum in the object-glass of

a microscope. This may be done by using more than two
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kinds of glass. There is also the possibility of diminishing the

secondary spectrum try employing two kinds of glass whose

relative partial dispersions (§ 166) are very nearly the same

for all the spectrum-intervals; and, in fact, one of the prin-

cipal items in the Abbe-Schott programme for the manu-

facture of optical glass was the production of various pairs

of flint and crown glass suitable for such combinations, so

that the dispersions in the different regions of the spectrum

should be, for each pair, as nearly as possible proportional.

This purpose was satisfactorily accomplished, and we have

now achromatic lenses of a far more perfect kind than could

be made out of the older kinds of glass. This higher degree

of achromatism is called apochromatism. An apochromatic

photographic lens is absolutely essential in the three-color

process of photography in which the three images taken

through light-filters on a plate of medium or large size must

be superposed as exactly as possible. In most ordinary op-

tical systems, however, the secondary spectrum is relatively

unimportant, and achromatism with respect to two prin-

cipal colors will usually be found to be sufficient.

168. " Optical Achromatism " and " Actinic Achromat-

ism."—The character and extent of the secondary spectrum

(§ 167) of an achromatic combination of lenses will evidently

depend essentially on the choice of the two principal colors for

which the achromatism is to be achieved. This choice will

be determined by the purpose for which the instrument is

intended and the mode of using it. Thus, if the system is

to be an optical instrument in the strict literal sense of the

word, that is, if it is constructed to be used subjectively in

conjunction with the eye, we shall be concerned primarily

with the physiological action of the rays on the retina of the

human eye; whereas in the case of a photographic lens which

is used to focus an image on a prepared sensitized plate, it

is important to have achromatism with respect to the so-

called actinic rays corresponding to the violet and ultra-

violet regions of the spectrum, because these are the rays
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which are most active on the ordinary bromo-silver gelatine

plate.

The retina of the human eye is most sensitive to the kind

of light which is comprised within, the interval between the

lines C and F, with a distinct maximum of visual effect cor-

responding to wave-lengths lying somewhere between the

lines D and E. Accordingly, in an optical instrument which

is to be applied to the eye, it is usually desirable to unite the

red and blue rays as nearly as possible at the focus of the

yellow rays. If, for example, the system is assumed to be

a convergent combination of two thin lenses in contact (as

in the case of the object-glass of a telescope), it will be found

that the focal points corresponding to the colors (say, green

and yellow) between C and F will lie nearer the lens and the

focal points corresponding to the other colors (dark red,

dark blue and violet) will lie farther from it than the com-

mon focal point of the two principal colors C and F. More-

over, the residual color-error or secondary spectrum in this

case will be least for some color very nearly corresponding to

the D-line, which is a favorable circumstance, since, as above

stated, this is the region of the brightest part of the visible

spectrum. Achromatism with respect to the colors C and F

omatism.I v =— ) is sometimes called optical achr<
\ riF-nc/

On the other hand, in the construction of a photographic

lens a kind of compromise must be effected between the con-

vergence of the visual rays and the so-called actinic rays,

because the image has to be focused first on the ground glass

plate by the eye and afterwards it has to be received on the

sensitized plate or film which is inserted for exposure in the

camera in the place of the translucent focusing screen. Ac-

cordingly, for ordinary photographic practice an exact co-

incidence of the "optical" and " actinic" images is de-

manded. Here it is found that the best results are obtained

by uniting the colors corresponding to the D-line and the

violet band in the spectrum of hydrogen, which, since it is



§ 169] Achromatic Prism 491

not far from the G-line, may be designated by G' (434^/0-

This is sometimes called actinic or photographic achromat-

ism for which the function v has a special value, namely

:

_ = flD-1

riG'-nj)

If the photographic lens is a combination of two thin

lenses in contact, which is achromatic for the colors D and

G', the focus of the rays corresponding to the blue-green

region of the spectrum will be nearer the lens than the com-

mon focus of the two principal colors and the focus of the

bright red rays will be farther from the lens. In an achro-

mat of this kind the residual dispersion will usually be quite

large for both the " optical" and the "actinic" image, but

for most practical purposes the definition of the image in

either case is good enough. In astrophotography the focus

of the camera is determined once for all, and a lens for stellar

photography is usually designed to have an entirely actinic

achromatism, the two principal colors in this case correspond-

ing to the F-line (486/f/x) and the violet line in the mercury-

spectrum (405fifi). The rays belonging in these two colors

are made to unite as nearly as possible at the fociis of the

rays corresponding to the G'-line, which is approximately

the place of maximum actinic action. In a photographic

achromat of this kind the foci of the green, yellow and red

rays will lie beyond the actinic focus in the order named.

169. Achromatic Combination of Two Thin Prisms.—
Two prisms of different substances may be combined so as

to obtain achromatism in the sense that rays of light cor-

responding to a definite pair of colors will issue from the

system in parallel directions, as represented in Fig. 212.

When an object is viewed through the combination, the red

and blue rays, for example, will be fused or superposed and

the residual color-effect will be comparatively slight. By
employing a greater number of prisms a more perfect union

of colors could be obtained, but usually two prisms are suf-

ficient.
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The problem is simplified by assuming that the refracting

angles of the prisms, denoted here by /3 and 7, are both

small; so that the deviation produced by each prism may be

considered as proportional to its refracting angle, accord-

ing to the approximate formula deduced in § 60. Usually,

Fig. 212.—Achromatic combination of two thin prisms.

the two prisms are cemented together with their edges par-

allel but oppositely turned, as shown in the diagram, so that

the thicker portions of one prism are adjacent to the thinner

portions of the other; accordingly, the total deviation (e)

will be equal to the arithmetical difference of the deviations

produced by each prism separately.

Let P, Q and R designate three elementary colors, the

color Q being supposed to lie between P and R in the spec-

trum; and let the indices of refraction for these three colors

be denoted by nP', Uq and nR' for the first prism and by

n~p", nQ
f and nR" for the second prism. The total devia-

tions for the three colors will be:

€P =(V- 1) j8- (V -1)7, eQ =(V-1)0- (V- 1) y,

€R =(nR'-l)i3-(nR"-l)7.

Now if the system is to be achromatic with respect to the

colors P and R, the condition is that eP= eR , which, there-

fore, is equivalent to the following

:

/3_ nR"-y .

7 nR'-nF '
'

that is, the refracting angles of the prisms must be inversely
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/-Wp /

) P-

§ 170] Direct Vision Prism 493

proportional to the partial dispersions of the two media for

the two given colors.

Moreover, the deviation of the rays of the intermediate

color Q will be

:

' V-l _ nQ"-l)
*

ftR'-ttp' WR // -Wp / '

Actually the colors P, Q and R are usually chosen to cor-

respond to the Fraunhofer lines C, D and F, respectively,

in which case the combination will be achromatic with re-

spect to C (red) and F (blue) . Thus, the fractions inside the

large brackets are the ^-values of the two kinds of glass.

Accordingly, for an achromatic combination of two thin

prisms for which the deviation €D has a finite value, whereas

the dispersion ( ec — €p ) is abolished, we have the following

formulae

:

l=n*"7 nc
"

, £D= (nF'-nc') {v>-v")P.
7 riF-nc

Consider, for example, a combination of two kinds of Jena

glass as follows:

nD nF— uq v

Light Phosphate Crown 1.5159 0.007 37 70.0

Borate Flint 1.5503 0.009 96 55.2

Assuming that the angle of the crown glass prism is (3 = 20°,

we find: 7 = 14.8°, €D = 2.18°. Generally speaking, those

pairs of glasses in which the partial dispersions are more

nearly equal will be .found to be best adapted for achromatic

combinations.

170. Direct Vision Combination of Two Thin Prisms.—
In the case of an ordinary prism-spectroscope the rays are

deflected in passing through the system, so that in order to

view the spectrum the eye has to be pointed not directly

towards the luminous source, but in some oblique direction;

which is sometimes inconvenient, especially in astrophysi-

cal observations. Accordingly, various prism-systems have

been proposed which are designed so that rays corresponding

to some definite standard color are finally bent back into
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their original direction, with the result that there is disper-

sion without deviation, which is an effect precisely opposite

to that which is obtained with an achromatic prism. In

these so-called direct vision prisms (prismes a vision directe)

Fig. 213.—Direct vision prism combination (dispersion without deviation).

the spectrum of an illuminated slit will be seen in the same

direction as the slit itself. The condition that the light cor-

responding, say, to the Fraunhofer D-line shall emerge

from the system in the same direction as it entered is €D = 0.

Assuming that the combination is composed, as before, of

two thin prisms juxtaposed in the same way (Fig. 213), and

employing the same symbols (§ 169), we derive immedi-

ately the following formulse

:

jg_nD"-l
7 nW-l '

CO" €f=Od'-1) \y--) '

Consider, for example, the following combination

:

nD v

Light Phosphate Crown 1.5159 70.0

Heavy Silicate Flint 1.9626 19.7

the difference of the ^-values here being very great. If

we put = 20°, we find: 7 = 10.72°, €C - eF = 22.56'.

It will be profitable for the student to satisfy himself by

several examples that two kinds of glass which are best

adapted for a direct vision prism combination are on the
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contrary not very suitable for an achromatic prism, and vice

versa; as might naturally be expected, since the effects are

opposite in the two cases. Generally speaking, the two kinds

of glass used for a direct vision prism should have very dif-

ferent ^-values, as in the illustration given above.

In the case of prisms of large refracting angles, the formula?

here and in § 169 are hardly to be considered as even ap-

proximate.

171. Calculation of Amici Prism with Finite Angles.—
Accurate formulae for the calculation of an achromatic or

direct vision prism-system may easily be derived when the

Fig. 214.—Direct vision prism combination. Diagram represents one-half

of so-called Amici direct vision prism.

system consists of only two prisms. As an illustration of

the method in the case of a direct vision prism, let us em-

ploy here the symbols n\ and ni to denote the indices of re-

fraction of the crown glass prism and the flint glass prism,

respectively, for light of some standard wave-length; and

let j8 and y denote their refracting angles. We shall sup-

pose also that the two prisms are cemented along a common
face, as represented in Fig. 214. A ray of the given wave-

length is incident on the crown glass prism at an angle d

and is refracted into this medium at the angle 0', so that

tti.sin 0'=sin 6. (1)

If the angles of incidence and refraction at the surface of
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separation of two kinds of glass are denoted by ^ and ^',

then

ni.sin^ = 7i2.sin^
r

, (2)

0' = $-+; (3)

the angles here being all reckoned as positive. If, finally, it

is assumed that the ray meets the second face of the second

prism normally and issues again into the air in the same di-

rection as it had originally, then also

:

f = 7, (4) and d=/3-y. (5)

The problem consists in determining the angle of one of the

prisms when the angle of the other is given. Suppose, for

example, that an arbitrary value is assigned to the acute

angle 7, and it is required to find the magnitude of the

angle fi. Substituting in (1) the values of 6, d' as given

in (3) and (5), we obtain:

tti.sin(/3-^)=sin(/3- 7),

whence we derive:

a fti.sin^— sin7
tan p = -. .

Eliminating ^' from (2) and (4), we find:

ni.sin ^=712.sin 7,

and consequently also:

Tii. cos ^ = \Zn\— nl.sui'y.

Accordingly, the value of /5 in terms of m, ni and 7 is given

by the formula:

tMn p. («.-!) JET
.

-y/nl — n^sin27 - cos7
If, on the other hand, the value of the angle /3 has been

chosen arbitrarily, the calculation of 7 will be found to be

trigonometrically a little more difficult. It is left as an ex-

ercise for the student to show that

:

fanT _ ^2-1+ V^(tt2 -l) 2+ (n
2
i-l) (n

2

2
-^)tan 2

^
tsing7

(ri
2 -nDtan2 /3+(n2 -l) 2

If it is desired that the emergent ray shall not only be par-

allel to the incident ray but that its path shall be along the
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same straight line, it is necessary to add to the above another

combination identical with it and placed so that the two

flint glass prisms constitute in reality one single prism of re-

fracting angle 27 inserted between two equal crown glass

prisms each of refracting angle j8, as shown in Fig. 215; and,

Fig. 215.

—

Amici direct vision prism.

in fact, this is the actual construction of the common form

of the Amici prism. Suppose, for example, that the angle

7=45° and that the two kinds of glass are those described

in the Jena catalogue as " light phosphate crown" and

"heavy silicate flint" with indices ni = 1.5159 and n2 = 1.9626

corresponding to the D-line; then we find that the angle /? =
98° 7.4'.

172. Kessler Direct Vision Quadrilateral Prism.—One

of the principal objections to a train of prisms is the loss of

light by reflection at the various surfaces and also by ab-

sorption in traversing the successive media. Partly with a

view to diminishing these losses and partly also on account

of other advantages, many forms of direct vision prism have

been proposed which are made of one piece of glass with four

or more plane faces; in all of which, however, the principle

is the same, namely, by means of a series of total internal

reflections to bend the rays corresponding to some standard

intermediate color back finally into their original direction.

The simplest of all these devices is the four-faced prism

ABCD (Fig. 216) proposed by Kessler, a principal section

of which has the form of a quadrilateral with perpendicular

diagonals. The ray of standard wave-length enters the prism
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and leaves it in a direction parallel to the diagonal BD; it is

totally reflected twice, first at the face BA and again at the

face AD, the path of the ray between these reflections being

parallel to its direction at entrance and emergence. More-

A
Fig. 216.

—

Kessler direct vision prism.

over, in virtue of the symmetry of the prism, the path of the

emergent ray will be a continuation of the rectilinear path of

the incident ray. If the angles at A, B and C are denoted by
a, $ and 7, respectively, then

a+2/3+7 = 360o
; (1)

and if the angles of incidence and refraction at the face BC
are denoted by 6, 6', then

o-\, 0'=|-<s; (2)

and, finally, if the index of refraction is denoted by n,

n.sin0' = sin0. (3)

Consequently, eliminating the angles 6, 6' by means of

(2) and (3), we obtain:

n.sin(-^-/3)=sim|
; (4)

so that if the value of one of the angles a, /? and 7 is chosen

arbitrarily, the other two angles can be determined by means

of equations (1) and (4).

If the principal section of a Kessler prism has the form

of a rhombus (Fig. 217), parallel incident rays may be re-
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c

A

Fig. 217.—Rhomboidal form of Kessler prism.

ceived on both faces BA and BC. In this case the angles

a and y are equal, and hence /3+7 = 180°, and therefore

= | , 0' =^-18O°,

so that

7i.sin(^-180°)=sin^,

whence we obtain

:

•sm^ = cos
2 V \n2 2 V 4n

For example, if n = 1.64, we find = 36° 24', 7 = 143° 36'.

173. Achromatic Combination of Two Thin Lenses.—
The positions of the principal and focal points of a lens-

sj'stem vary for light of different colors, and if the system is

to be used as a magnifying glass or as the so-called ocular

of a microscope or telescope, a chief consideration will be

that the apparent sizes of the colored virtual images which

are presented to the eye shall all be the same, that is, that

the red and blue images, for example, shall subtend the

same angle at the eye, no matter whether their actual sizes

and positions are different or not. But the apparent size

of the infinitely distant image of an object lying in the

primary focal plane of the lens-system is measured by the
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refracting power of the system (§ 122) ; and hence the condi-

tion of achromatism in this case is that the refracting powers

(or focal lengths) of the system shall be equal for the two
colors in question. (Achromatism with respect to the focal

length; see § 167.)

Let us assume that the system is composed of two thin

lenses whose refracting powers for light of a certain definite

wave-length X are denoted by Fx and F2; then the refract-

ing power of the combination will be F=Fi+F2 —c.Fi.F2)

where c denotes the air-interval between the two lenses.

For a second color of wave-length X+AX (where AX de-

notes a small variation in the value of X), the refracting

powers of the lenses will be slightly different, and the re-

fracting power of the combination for this color will be:

F+AF=(F1+AF1)+(F2+AF2)-c(F1+AF1) (F2+AF2).

Subtracting these two equations, at the same time neglect-

ing the term which involves the product of the small varia-

tions A,Pi and AF2 , we obtain

:

AF=AFX+AF2- (F2.AFi+Fi.AF2)c.

Evidently, the condition that the system shall be achromatic

with respect to its refracting power is AF=0; which, there-

fore, is equivalent to the following:

_ F2.AFi+FlmAF2
C ~ AFi+AF 2

'

Now if n\ denotes the index of refraction of the first lens for

light of wave-length X, then

ft-(m-l)Ki,

where Ki denotes a constant whose value depends simply on

the form of the infinitely thin lens, that is, on the curvatures

of its surfaces. Similarly, for light of wave-length X+AX,
we have:

Fi+AFi=(m+Ani-l)Ki;

and hence

AFx= Ki.Am=Fi-
A
fti— 1
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But Am/(ni—l)=l/Pi is the expression for the dispersive

power of the material of the first lens (§ 165), and accordingly

we may write

:

and, analogously, for the second lens:

v2

Introducing these expressions for AFi and AF2 in the equa-

tion above, we find, therefore, as the condition that a pair of

thin lenses shall be achromatic with respect to the refracting

Fig. 218.

—

Hutgens's ocular.

power of the system, the requirement that the distance be-

tween the two thin lenses shall satisfy the following equa-

tion:

v2.Fi+vi.F2
c =

(Vl+V2)Fl-F2 '

or

_^l./l+ ^2-A
• C j ,

where fi = l/Fi and f2 = l/F2 denote the focal lengths of the

lenses.
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If both lenses are made of the same glass, then v1 = v2 , so

that in this case the condition of achromatism becomes

:

./1+/2
c =

Thus, for example, Huygens's ocular (Fig. 218) is composed

of two plano-convex lenses made of the same kind of glass,

the curved face of each lens being turned away from the

eye and towards the incident light. The first lens is called

the
"
field-lens" and the second lens is called the " eye-lens."

In this combination /1 = 2/2 (although in actual systems this

Fig. 219.

—

Ramsden's ocular.

condition is usually only approximately satisfied) and c=

3/2/2, or f2 :c :/i = 2 :3 : 4. Ramsden's ocular (Fig. 219)

consists likewise of two plano-convex lenses of the same kind

of glass, but with their curved faces turned towards each

other and in this combination f1 =f2 =f=c. Both of these

types satisfy, therefore, the above condition of achromatism

and yield images that are free from color-faults not only in

the center but at the border of the field.

174. Achromatic Combination of Two Thin Lenses in

Contact.—If the two lenses are in contact (c = 0), the con-

dition of achromatism, as found in the preceding section,

becomes

:

Vifi+V2.f2==0,
or

^+^ =0.

The quotient of the refracting power of a lens by the dis-
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persive power of the glass of which it is made, namely, the

magnitude F/v, is sometimes called the dispersive strength

of the lens; so that according to the above equation we may
say that the condition of achromatism of a combination of

two thin lenses in contact is that the algebraic sum of their

dispersive strengths shall vanish. Accordingly, it appears

that such a system can be achromatic only in case the sub-

stances of which the two lenses are made are different. More-

over, while one of the lenses must be convex and the other

concave, their actual forms are of no consequence so far as

the mere correction of the chromatic aberration is concerned.

It is to be remarked also that in an achromatic lens of neg-

ligible thickness achromatism with respect to the focal lengths

implies also achromatism with respect to the positions of

the focal points and principal points, so that such a lens will

be achromatic for all distances of the object.

If F denotes the prescribed refracting power of the com-

bination then, since,

^ = ^1+^2,
we find:

Fi=^-F, F2=--^—F.
Vi-V2 Vi-V2

The total refracting power F will have the same sign as

that of the lens which has the greater r-value; for example,

the combination will act like a convex lens provided the

v-value of the positive element exceeds that of the nega-

tive element.

Thus, being given the values of F, vx and v2} we can em-

ploy the above relations to determine the required values

of F\ and F2 . Moreover, if Ki denotes the algebraic differ-

ence of the curvatures of the two faces of the first lens, and,

similarly, if K2 denotes the corresponding magnitude for

the second lens, then

ni-1 n 2 -l
where nh n2 denote the indices of refraction of the two kinds
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of glass for some standard wave-length, as already stated,

which is usually light corresponding to the Fraunhofer

D-line. Thus, while the magnitudes denoted by Ki and K2

may be computed, the actual curvatures or radii of the lens-

surfaces remain indeterminate; so that there are still two

Fig. 220.

—

Dollond's
telescope objective.

Fig. 221. — Fraun-
hofer's telescope

objective, No. 1.

Fig. 222. — Fraun-
hofer's telescope

objective, No. 2.

Fig. 223.

—

Herschel's
telescope objective.

Fig. 224.—Barlow's
telescope objective.

Fig. 225.— Gauss's
telescope objective.

other conditions which may be imposed on an achromatic

combination of this kind. For example, in some cases it

may be conventient to cement the two components together,

and then one of the conditions will be that the curvatures of

the two surfaces in contact shall be equal. Usually, how-

ever, a more important requirement will be the abolition of

two of the so-called spherical errors due to the fact that the
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rays are not paraxial, so that the image will be sharp and

distinct, especially at the center.

Some historic types of achromatic object-glasses of a tel-

escope are illustrated in the accompanying diagrams. Dol-

lond's achromatic doublet (Fig. 220) consisted of a double

convex crown glass lens combined with a double concave flint

glass lens; whereas Fraunhofer's constructions show a com-

bination of a double convex and a plano-concave lens (Fig.

221) and of a double convex and a meniscus lens (Fig. 222).

J. Herschel's form (1821) is shown in Fig. 223, Barlow's

(1827) in Fig. 224; and, finally, the Gauss type made by

Steinheil in 1860 is exhibited in Fig. 225. The newer va-

rieties of Jena glass make it possible to construct an achro-

matic objective of two lenses which is far superior in achro-

matism to any of the older types above mentioned.

PROBLEMS

1. Find the values of the reciprocals of the dispersive

powers (§ 165) of alcohol and water, using data given in

table in § 163. Ans. Alcohol, 60.5; water, 55.7.

2. The indices of refraction of rock salt for the Fraun-

hofer lines C, D and F are 1.5404, 1.5441 and 1.5531, re-

spectively. Calculate the value of the reciprocal of the dis-

persive power. Ans. 42.84.

3. White light is emitted from a luminous point on the

axis of a thin lens. If the yellow rays are brought to a focus

at a point whose distance from the lens is denoted by u',

show that the distance between the foci of the red and blue

rays is approximately equal to 2 F.u'/v, where F denotes the

refracting power of the lens for yellow light and v denotes

the reciprocal of the dispersive power of the lens-medium.

4. A lens is made of borate flint glass for which ^ = 55.2.

The focal length of the lens for sodium light is 30 inches.

Find the distance between the red and blue images of the

sun formed by the lens. Ans. 0.54 in.
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5. A crown glass prism of refracting angle 20° is to be

combined with a flint glass prism so that the combination

will be achromatic for the Fraunhofer lines C and F. The
indices of refraction are as follows

:

nc n-D nF
Crown 1.526 849 1.529 587 1.536 052

Flint 1.629 681 1.635 036 1.648 260

Using the approximate formulae for thin prisms, show that

the refracting angle of the flint prism will be 9° 54' 11", and

that the deviation of the rays corresponding to the D-line

will be 4° 18' 7".

6. A direct vision prism combination is to be made with

the same kinds of glass as in the preceding problem; so that

rays corresponding to the D-line are to emerge without de-

viation. If the refracting angle of the crown glass prism is

20°, show that the refracting angle of the flint glass prism

will be 16° 40' 48", and that the angular dispersion between

C and F will be 9' 33".

7. An Amici direct vision prism (§ 171) is to be made of

crown glass and flint glass whose indices of refraction for

the D-line are 1.5159 and 1.9626, respectively. If the re-

fracting angles of the two equal crown glass prisms are each

equal to 45°, show that the refracting angle of the middle

flint glass prism will be 98° 7.4'.

8. A Kessler prism (§ 172) in the form of a rhombus is

made of glass of index nD = 1.6138. Find the angles of the

prism. Ans. 35° 5' and 144° 55'.

9. A thin lens is made of crown glass for which z>i = 60.2.

Another thin lens is made of flint glass for which *>2 = 36.2.

When the two lenses are placed in contact they form an

achromatic combination of focal length 10 cm. Find the

focal length of each lens. Ans. /i =3.99 cm.
; /2 = —6.63 cm.

10. An achromatic doublet is to be made of two thin

lenses cemented together, and the focal length of the com-

bination for the D-line is to be 25 cm. The first lens is a

symmetric convex lens of barium silicate glass and the other
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lens is a concave lens of sodium lead glass. The indices of

refraction are:

^D Up— Tie

Barium silicate 1.6112 0.01747

Sodium lead 1.5205 0.01956

Find the radii of the surfaces on the supposition that the rays

corresponding to the lines C and F are united.

Ans. The radii of the first and last surfaces are +14.60

and —22.65 cm., respectively.

11. A symmetric double convex lens is made of rock salt

for which nc = 1.5404 and nF = 1.5531. Find the thickness

of the lens if the focal lengths for the colors C and F are equal.

Ans. d = 3.4363. r, where r denotes the radius of the first

surface of the lens.

12. Two thin lenses of the same kind of glass, one convex

of focal length 9 inches, the other concave of focal length

4 inches, are separated by an interval of 20 inches. A small

white object is placed 36 inches in front of the convex lens.

Show that the various colored images are all formed at the

same place.

13. Two thin lenses of the same kind of glass, one convex

and the other concave, and both of focal length 4 inches, are

adjusted on the same axis until the colored images of a white

object placed 12 inches in front of the convex lens are formed

at the same place. Show that the interval between the lenses

must be twelve inches.

14. A lens-system surrounded by air is composed of m
spherical refracting surfaces. Assuming that the total thick-

ness of the system is negligible, show that the condition of

achromatism is

k=m
2 (#k_i-i4) Snk = 0,

k=2
where Rk denotes the curvature of the kth surface and 8nk
denotes the dispersion of the medium included between the

(k — l)th and kih surfaces for light of the two colors to be

compensated.



CHAPTER XV

RAYS OF FINITE SLOPE. SPHERICAL ABERRATION,

ASTIGMATISM OF OBLIQUE BUNDLES, ETC.

175. Introduction.—The theory of the symmetrical op-

tical instrument, as it has been developed in the preceding

chapters, is based on the assumption that the rays concerned

in the formation of the image are entirely confined to the

so-called paraxial rays (§ 63) whose paths throughout the

system are contained within an exceedingly narrow cylindri-

cal region of space immediately surrounding the axis. With

this fundamental restriction it was found that there was

perfect collinear correspondence between object-space and

image-space; so that a train of spherical waves emanating

from an object-point was transformed by the optical system

into another train of spherical waves accurately converging

to or diverging from a corresponding center called the image-

point; and so that, in general, a plane object at right angles

to the axis was reproduced point by point by a similar plane

image. As a matter of fact, these ideal conditions are never

realized in any actual optical system except in the case of a

plane mirror or combination of plane mirrors. Moreover,

according to the wave-theory of light, a mere homocentric

convergence of the rays is not sufficient for obtaining a point-

image of a point-source ; for this theory lays particular stress

on the further essential requirement that the effective por-

tion of the wave-surface which contributes to the produc-

tion of the image shall be relatively large in comparison with

the radius of the surface, if the light-effect is to be concen-

trated as nearly as possible at a single point and not spread

over some considerable area in the vicinity of the point. This

condition implies, therefore, that the aperture of the bundle

508
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of effective rays must not be below a certain finite limit, in

other words we are compelled by a practical necessity, wholly

aside from the principles at the basis of geometrical optics, to

employ more or less wide-angle bundles of rays. Moreover,

if a wide-angle bundle of rays is a requirement of a distinct,

clear-cut image, it is also equally essential for a bright image.

Thus, on both theoretical and practical grounds, it is found

necessary to extend the limits of the effective rays beyond

the paraxial region.

Instead, therefore, of the ideal case of collinear correspond-

ence of object-space and image-space, the theory of optical

instruments is complicated by numerous practical and, for

the most part irreconcilable difficulties, due chiefly to the

so-called aberrations or failure of the rays to arrive at the

places where they might be expected according to the

simple theory of collineation or point-to-point corre-

spondence (punctual imagery). In the preceding chapter

brief reference was made to the chromatic aberrations arising

from the differences in the color of the light; but now we
have to deal with the monochromatic aberrations of rays of

light of one definite wave-length which are caused by the pe-

culiarities of the curved surfaces at which the rays are re-

flected and refracted. These surfaces are nearly always

spherical in form, and hence the aberrations of this latter

kind are usually called spherical aberrations. A complete

treatment of this intricate subject lies wholly outside the

scope of this volume. In the present chapter it must suffice

to point out the general nature of some of the more important

of the so-called spherical errors. First, however, we must

see how to trace the path of a single ray through a centered

system of spherical surfaces before we are in a position to

study a bundle of rays.

176. Construction of a Ray Refracted at a Spherical

Surface.—In § 34 a method was explained for constructing

the path of a ray refracted from one medium into another,

which is always applicable to a refracting surface of any form.
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The following elegant and useful construction of the path of

a ray refracted at a spherical surface was published in 1807

by Thomas Young (1773-1829.)

Fig. 226.—Construction of ray refracted at convex spherical surface (n'>ri).

In the accompanying diagrams (Figs. 226 to 229) the

center of the spherical refracting surface ZZ is designated

by C. The point R is any point on the path of the incident

ray lying in the first medium of refractive index n. The point

Fig. 227.—Construction of ray refracted at concave spherical surface (w'>n).

where the ray meets the spherical refracting surface is marked
B. The plane of the paper which contains the incident ray

RB and the incidence-normal BC is the plane of incidence.



176] Young's Construction 511

The index of refraction of the second medium is denoted by
n' and the radius of the spherical refracting surface by r.

Around C as center and with radii equal to n'.r/n and n.rjn'

Fig. 228.—Construction of ray refracted at convex spherical surface (n'<n).

describe, in the plane of incidence, the circular arcs k and k',

respectively; and let S designate the point where the straight

line RB, produced if necessary, meets the arc k. Draw the

straight line CS ntersecting the arc k' in the point S'. Then

Fig. 229.—Construction of ray refracted at concave spherical surface (n'<n).

the straight line BT drawn from B through S' will represent

the path of the refracted ray. In making this construction,

care must be taken to select for the point S that one of the
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two points in which the straight line RB cuts the circle k

which will make the segments BS and BS' both fall on the

same side of the incidence-normal, since the angles of in-

cidence and refraction are described always in the same

sense, both clockwise or both counter-clockwise.

The proof of the construction is simple. Since the radius

r =BC is a mean proportional between the radii SC=n'.r/n

and S'C=n.r/n/

, that is, since

CS :CB =CB :CS'-n' :n,

the triangles CBS and CBS' are similar, and hence Z CBS =

Z BS'C. In the triangle CBS

:

sinZCBS : sinZBSC =CS : CB=n' : n.

By the law of refraction: n.sma=n'.sma', where a =

ZCBS. Consequently, ZBSC = ZCBS'= a', so that the

straight line BS' is the path of the refracted ray.

This construction can be employed to trace the path of

a ray graphically from one surface to the next through a

centered system of spherical refracting surfaces.

177. The Aplanatic Points of a Spherical Refracting Sur-

face.—Incidentally, in connection with the preceding con-

struction, attention is directed to the singular character of

all pairs of points such as S, S' determined by the intersec-

tions of the two concentric auxiliary spherical surfaces with

any straight line drawn from their common center C. To
every incident ray directed towards the point S there will

correspond a refracted ray which will pass ("really" or

" virtually") through the other point S'; so that in this

special case we obtain a homocentric bundle of refracted

rays from a homocentric bundle of incident rays, for all

values of the aperture-angle of the bundle. Thus, S' is a

point-image of the object-point S. The distances of S and

S' from the center C are connected by the invariant-relation:

w'.CS'=w.CS.

That pair of these points which lies on the optical axis is

especially distinguished and called the pair of aplanatic
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points of the spherical refracting surface; they are designated

by J, J' (Fig. 230). Thus, we have:

CJ :AC=AC :CJ'=n' :n,

or

CJ.CJ' = r
2

, n.CJ=rc'.CJ'.

The aplanatic points, therefore, he always on the same side

z

Fig. 230.—Aplanatic points of spherical refracting surface.

of the center C so that whereas the rays must pass "really"

through one of them, they will pass " virtually'' through

the other. In geometrical language the pdints J, J' are said

to be harmonically separated (§ 67) by the extremities of

the axial diameter of the refracting sphere.

178. Spherical Aberration Along the Axis.—However, in

general, a homocentric bundle of rays incident on a spheri-

cal refracting surface will not be homocentric after refrac-

tion. The diagram (Fig. 231) represents the case of a merid-

ian section of a bundle of incident rays which are all parallel

to the axis of a convex spherical refracting surface for which

nf>n. It will be seen that, whereas the paraxial rays after

refraction meet on the axis at the second focal point F', the

outermost or edge rays cross the axis at a point L' between

the vertex A and the focal point F'; and the intermediate

rays cross the axis at points lying between F' and I/. The

segment F'L' is the measure of the spherical aberration along
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the axis or the axial aberration of the edge ray of a direct

cylindrical bundle of incident rays. (By a " direct" bundle

of rays is meant a bundle of rays emanating from a point on

the axis.) In the figure this segment is negative, that is, meas-

ured in the sense opposite to that of the incident light; and

Fig. 231.—Spherical aberration.

this effect is usually described by saying that a convex spheri-

cal refracting surface at which light is refracted from air to

glass is spherically under-corrected; whereas, under the same
circumstances, a concave spherical refracting surface will be

found to be spherically over-corrected, that is, the segment

F'L' in this case will be positive. In fact, the points of in-

tersection of pairs of consecutive rays lying in the plane of

a meridian section of a spherical refracting surface form a

curved line lying symmetrically above and below the axis,

if the bundle of incident rays is symmetric with respect to

the axis; and this plane curve is the so-called caustic curve

of the meridian rays. The two branches on opposite sides

of the axis unite in a double point or cusp at the point on

the axis where the paraxial rays intersect, so that the axis

is tangent to both branches at this point, which in the figure
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is the point F'. The system is said to be spherically over-

corrected or under-corrected according as the cusp is turned

towards the incident light (<) or away from it (>), respec-

tively; on the supposition that the incident rays are parallel

to the axis. Each refracted ray in the meridian plane touches

the caustic curve, and hence this curve is said to be the geo-

metrical envelope of the meridian section of the bundle of

refracted rays.

If the entire figure is revolved around the optical axis the

arc ZZ will generate a zone of the spherical refracting sur-

face containing the vertex A; and each incident ray pro-

ceeding parallel to the axis will generate a cylindrical sur-

face, and all the refracted rays corresponding to the incident

rays which lie on the surface of one of these cylinders will

intersect in one point lying on the axis between F' and L'.

The revolution of the caustic curve will generate a caustic

surface, which will be the enveloping surface of the bundle of

refracted rays (see § 187.)

The caustic curve terminates at the point H' where the

edge ray intersects the next consecutive ray in the meridian

section. If a plane screen erected at right angles to the axis

so as to catch the light transmitted by the bundle of refracted

rays is placed initially in the transversal plane that passes

through the extreme point H' and then gradually shifted

parallel to the axis towards the second focal plane, there will

appear on the screen at first a circular patch of light sur-

rounded on its outer edge by a brighter ring, which will grad-.

ually contract as the screen approaches L'. Between L'

and F' there will be seen at the center of the circular patch

of light an increasingly bright spot. For a certain position

G' where the distance of the screen from F' is about three-

fourths of the length of F'L' the cross-section of the bundle

of refracted rays will have its narrowest contraction. This

section is sometimes called the least circle of aberration.

179. Spherical Zones.—Since, in general, it is not possible

to abolish the spherical aberration of a single spherical re-
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fracting surface, the only means available is to try to ac-

complish this result by distributing the duty of refracting

the rays over a series of surfaces whose curvatures and dis-

tances apart are so nicely adjusted with respect to each other

that when the rays finally emerge they will all unite in one

focus on the axis. Thus, for example, if the incident rays

are supposed to be parallel to the axis of the system, and if

the system has been designed so as to be spherically corrected

Fig. 232.—Graphical representation of the spherical zones of a lens.

for the edge ray which meets the first surface at the distance

h from the axis, it is conceivable that all the intermediate

rays of incidence-heights z (where h > z > 0) might perchance

emerge from the system along paths which all likewise passed

through the focal point F'; but practically this never hap-

pens. If the edge ray intersects the axis at F', an intermedi-

ate ray of incidence-height z will cross the axis at some other

point I/, and the segment F'L' is called the spherical aberra-

tion of the zone of radius z or simply the spherical zone z. The

spherical zones of a lens may be exhibited graphically by

plotting a curve whose abscissae are the values of F'L' and

whose ordinates are the corresponding values of z, as repre-

sented in Fig. 232.

180. Trigonometrical Calculation of a Ray Refracted at

a Spherical Surface.— The diagram (Fig. 233) represents a

meridian section ZZ of a spherical refracting surface of radius

r (=AC) separating two media of indices of refraction n, n'

.

A ray RB incident on the surface at B at an angle <x =

ZNBR = Z CBL crosses the axis at L at a slope-angle 6 =

ZALB. If the central angle is denoted by </> = ZBCA,
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and if the abscissa of the point L with respect to the center C
is denoted by c, that is, if c = CL, then in the triangle CBL,

we have the relations:

a=d+ 4>, c.sin# = — r.sina.

The path of the corresponding refracted ray is shown by the

straight line BT which crosses the axis at the point L'; and
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responding refracted rays cross the axis. This is the analyti-

cal statement of the fact of spherical aberration (§ 178).

The formulae for calculating the path of a ray reflected at

a spherical mirror may be derived immediately by putting

n'=—n (§ 75) in the preceding system of equations. Thus

we find:

sina =— sin 0, a'= — a, 0'= 0— 2a, c' =r . - - _ .

r sm(0-2a)
Incidentally, a number of other useful relations may be

obtained from Fig. 233. For example, if the distances of the

points L and L' where the ray crosses the axis before and

after refraction measured from the incidence-point B are

denoted by I and V, respectively, that is, if l = BL, Z' = BL',

where I and V are to be reckoned positive or negative ac-

cording as these lengths are measured in the same direction

as the light traverses the ray or in the opposite direction,

respectively; then

Z'.sin0' = Z.sin0;

and, since by the law of refraction,

n'.c'.sin 0'=ft.c.sin 0,

we obtain the useful invariant relation

:

n'.c' _n.c

1 T'
Moreover, by projecting the two sides c and I of the triangle

CBL on the third side r, the following formula is obtained

:

r = Lcosa— c.cos0,

which may be written

:

c_ r /cosa_l\

I coscj) \ r If

Similarly, in the triangle CBL'

:

c'_ r /cosa/_l\

Multiplying the first of these equations by n and the second

by n' and equating the resulting expressions, we find

:

,/cosa' 1\ /cos a 1\
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which may also be written

:

n' n n'.cos a'— ft.cosa ^ , N

V~T r
=0(say);

or finally:

L' = L+D,
where L = n/l, L r = n'll

f
.

If the ray is a paraxial ray, we may put cos a = cos o! = 1

(§ 63) ; and now if we write u, v! in place of I, V , respectively,

the formula above will reduce to the abscissa-equation for

the refraction of a paraxial ray at a spherical surface (§ 78).

Moreover, if in the last formula we put ft' = ft (§ 75), we
find the corresponding relation for the reflection of a ray at

a spherical mirror, namely:

1 1 _ 2cos a

1
+P~~r~'

181. Path of Ray through a Centered System of Spher-

ical Refracting Surfaces. Numerical Calculation.—Using

the same system of notation as in § 118, we may write the

formula for the refraction of a paraxial ray at the kth sur-

face of a centered system of spherical refracting surfaces,

as follows

:

W = Uk+Fk ,

where

Uk = nk/uk , Uk'=wk+i/%', and Fk = (nk+i-nk)/rk ;

ftk =AkMk , V = AkMk +i, 7k =AkCk .

And if dk =AkAk .f i, then also:

i/^k+i = i/t/'k-4K+i.
According to the relations given in § 180, we have the

following system of formulae for the refraction at the A;th

surface of a ray whose slope-angles before and after refraction

have the finite values 6k = Z AkLkBk and k +i = Z AkLk+iBk ,

respectively

:

ck . n . . ftk
sin ak = —— .sin k , sin ak =—— .sin ak ,

sin ak
#k+i= #k+ k - ak , ck =-rk .

sin k+
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where ck = CkLk and ck
' = CkLk+ i. Moreover, if we put

ak = CkCk

+

i = dk+rk _}_i
— rk ,

then

ck _j_i = ck — ak .

In order to exhibit the methods of calculations by means of

these formulae, a comparatively simple numerical illustra-

tion is appended. The actual example here chosen is one

given by Dr. Max Lange in his paper entitled " Vereinfachte

Formeln fiir die trigonometrische Durchrechnung optischer

Systeme" (Leipzig, 1909), pages 24, foil. The optical sys-

tem is a two-lens object-glass of a telescope for which the

data were published by Dr. R. Steinheil in the Zeitschrift

fiir Instrumentenkunde, xvii (1897), p. 389, as follows:

Indices of refraction (for D-line)

:

ni = n3 = Ub= l (air); n2 = 1.614 400 (flint); n4 =1.518 564

(crown)

.

Thicknesses:

di = 2; d2 = 0.01; d3 = 5.

Radii:

ri=+420; r2 = +181.995; r3 = +178.710; r 4=—40 133.8.

The incident rays are parallel to the axis, so that

1
= O, ui = ci= oo (C/i = 0).

The calculation is divided into two parts, namely: (1) the

calculation of the paraxial ray, and (2) the trigonometric

calculation of the edge ray which meets the first surface of

the object-glass at the height hi =33 above the axis. When
C\= oo , we find sinai = /ii/ri, which, according to the above

data, gives lg sin a\ = 1.5185139. This is the starting point

of the calculation of the edge ray.

Each vertical column contains the calculation for one

spherical refracting surface. The sign written after a log-

arithm indicates the sign of the number to which the loga-

rithm belongs. Generally the calculations do not have to be

performed to the degree of accuracy to which they are carried

here.
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1. PARAXIAL RAY
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_ ai = - 4° 30' 23.24" c 4
' = +41126.23

ai' = + 2° 47' 22.69" r4 = -40133.80

1
= O, ai'-ai= 2 =- 1° 43' 0.55"A4L 5 = + 992.43

-a2
= - 8° 41' 40.45" -i* 4

'= - 992.55

- 10° 24' 41.00" F'L 5 = - 0.12

a2
' = + 14° T 31.28"

03 = + 3 42' 50.28"

- a3= -14° 19' 13.26"

-10° 36' 22.98"

a3
'= + 9° 22' 26.69"

4
=- 1° 13' 56.29"

-a 4 = + 1° 16' 45.13"

+ 0° 2' 48.84"

a 4
'= - 1° 56' 33.95"

O = - 1° 53' 45.11"

Thus, we see that this object-glass has a slight spherical

aberration of —0.12, that is, it is a little under-corrected

(§ 178).

182. The Sine-Condition or Condition of Aplanatism.—
Suppose that for a certain object-point M (Fig. 234) on the

axis of a symmetrical optical instrument the spherical aber-

ration has been abolished for all the zones of the system, so

that rays proceeding from this point will all be accurately

focused at the conjugate image-point M'. On a straight

line perpendicular to the axis at M take a point Q very close

to M; and let ?/' = M'Q' denote the size of the image of the

object 2/
=MQ which is produced by the central zone, that is,

by the paraxial rays. Now even though .the system is spher-

ically corrected with respect to the pair of axial points M, M',

it by no means follows that rays emanating from Q will all

meet again in Q'. In order that this shall be the case, the

magnification-ratio must be equal to y'/y for all the zones

of the system. Draw the object-ray MBi and the corre-

sponding image-ray B 2M'; if the slopes of these rays are
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denoted by 6 and 0', it may be shown that for the zone

corresponding to the incidence-point Bi the magnification-

ratio is equal to n.sin d/n'.s'n 6'; and if this is equal to y'jy,

then the image formed by rays belonging to this zone will

be of the same size as the image y' made by the paraxial rays.

Fig. 234.—Sine-condition.

Thus, in order that with the employment of wide-angle

bundles of rays a symmetrical optical instrument may pro-

duce a sharp image of a little plane element perpendicular

to the axis of the instrument, not only must the system be

spherically corrected for the pair of conjugate axial points

M, M', but it must also satisfy the so-called Sine-Condition,

namely,

n.sin 6 _y
f

_
n'.sin d' y

This celebrated principle was clearly formulated by Abbe
in 1873, but it had already been recognized by Seidel, and

it may be deduced from a general law of radiant energy which

was first given by Clausius (1864). The proof of it must be

omitted here. It may be stated in words as follows: The
necessary and sufficient condition that all the zones of a

spherically corrected system shall produce images of equal

size at the point M' conjugate to the axial point M is that,

for all rays proceeding from M, the ratio of the sines of the

slope-angles 6, 6' of each pair of corresponding incident

and emergent rays shall be constant ; that is,

sin d n'
wm , ,-

—

tt.
=— . y= constant,

sin n
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The sine-condition

n.y.sin 6 = n'.y
f

.sin 0'

is essentially different from the Smith-Helmholtz law for

paraxial rays (see §88 and §118), namely, n.?/.tan0 =

n'.i/'.tan 6
f

, although when the angles 6, 6' are small, both

conditions may be expressed by the equation n.y. d = nf

.y
r

. 6
r
.

If the optical system is spherically corrected for the pair

of axial points M, M', and if at the same time the sine-condi-

tion is satisfied, the points M, M' are called the aplanatic

pair of points of the system. It may be demonstrated that

no optical system can have more than one pair of such apla-

natic points. In the case of a single spherical refracting sur-

face the two points J, J' (§ 177) whose distances from the

center C are such that

CJ.CJ' = r
2

, n.CJ=n'.CJ',

are a pair of aplanatic points as above defined; for they are

free from spherical aberration and if they are joined by

straight lines BJ, BJ' with any point B on the spherical re-

fracting surface, and if we put 6 = Z CJB, d' = Z CJ'B, we
have sin 0/sin d' = nfn' = constant. This property of the

points J, J' of a refracting sphere has been ingeniously util-

ized in the construction of the objective of the compound

microscope.

If in Fig. 234 we put Z = BiM, then smd=—h/l, where h

denotes the height of the point Bi above the axis. Hence,

the sine-condition may be written

:

or since (§ 124)

where /, f denote the focal lengths of the system and x de-

notes the abscissa of M with respect to the primary focal

point F (x = FM), we obtain also:

h _lf
sin 6' x

I.
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Suppose now that the object-point M is infinitely distant so

that x = l— oo
; then for a ray parallel to the axis meeting the

first surface at the height h, we shall have:

sin 0'
J '

Thus, if the aplanatic points are the infinitely distant point

of the axis and the second focal point F', and if around F' as

center we describe a sphere of radius equal to /', the parallel

object-rays will meet their corresponding image-rays on the

surface of this sphere; whereas in the case of collinear imagery

with paraxial rays the points of intersection of the incident

and emergent rays under the same circumstances will all lie

in the secondary principal plane (§ 119), which touches the

sphere above mentioned at the point where the axis crosses it.

If therefore we put h/sin 6' = e, the sine-condition for an

infinitely distant object is e+f=0. For example, in the

case of the telescope objective calculated in § 181:

lg hi = 1.5185139 +
clg sin 05=1 .4803948-

lge =2.9989087- e= -997.490

/= +997.585

e+f= + 0.095

Accordingly, the sine-condition is very nearly satisfied in the

case of this object-glass.

183. Caustic Surfaces.—The characteristic geometrical

property of a bundle of light-rays emanating originally from

a point-source is expressed in a law announced by Maltjs in

1808 (§ 39), which may be stated in terms of the undulatory

theory of light as follows : The rays of light are always normal

to the wave-surfaces. In fact, what is meant by a wave-sur-

face is any surface which cuts the rays orthogonally. In

general, the curvatures of the normal sections at any point of

a curved surface will vary from one azimuth to another; but,

according to Euler's theorem (§ 111), the normal sections of

greatest and least curvature, called the principal sections of
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the surface at the point in question, are always at right

angles to each other. It is well known that the normal drawn

to any point of a curved surface will not meet the normal at

a consecutive point taken arbitrarily. But if the consecutive

point is taken in the direction of either of the principal sec-

tions, the two consecutive normals will intersect. Thus,

along each normal to a curved surface there are two points

called the principal centers of curvature (§ 111), where con-

secutive normals lying in the two principal sections intersect.

Accordingly, if we regard a bundle of rays of light as a sys-

tem of normals to the wave-surface, we may say that each

ray determines two principal sections of the bundle, and that,

in general, there will be two points on the ray, the so-called

image-points (cf. § 113), where contiguous rays in each of the

two principal sections intersect the ray in question. The as-

semblage of these pairs of image-points on all the rays of a

wide-angle bundle of rays emanating originally from a

point-source form a surface of two sheets called the caustic

surface (cf. § 42). Each ray of the bundle is tangent to both

sheets of the caustic surface. In the special case when the

bundle of rays is symmetrical about an axis, one sheet of

the caustic surface will be a surface of revolution, whereas

the other sheet will be a portion of the axis of symmetry (see

§ 178).

184. Meridian and Sagittal Sections of a Narrow Bundle

of Rays before and after Refraction at a Spherical Surface

—The apertures of the bundles of effective rays which are

transmitted through a symmetrical optical instrument are

all limited by the position and dimensions of the aperture-

stop (§ 134). For the present it will be assumed that the

diameter of the stop is very small. Each point of the object

lying in the field of view is the source of a narrow bundle of

rays which contains one ray, called the chief ray (§ 140),

which in traversing the medium where the stop is placed,

passes through the center of the stop. Accordingly, the chief

ray will he in the meridian plane determined by the object-
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point where the bundle of rays originates. The path of this

chief ray may be traced geometrically by Young's construc-

tion (§ 176) or it may be calculated trigonometrically by

means of the system of formula? given in § 181. We have

now to investigate the positions on this chief ray of the two

image-points produced by the intersections of this ray with

the rays immediately adjacent to it lying in the two prin-

cipal sections of the bundle as determined by its chief ray

(§ 183). Whenever a narrow bundle of rays has two such

image-points, it is said to be a tigmatic. Practically, this is

always the case if the chief ray is incident on a refracting

surface at an angle a which is not vanishingly small. Under

such conditions the bundle of refracted rays will be astig-

matic, and we have the case which some writers call " astig-

matism by incidence" but which is better described as the

astigmatism of an oblique bundle of rays, as distinguished from

Fig. 235.—Meridian section of narrow bundle of rays refracted at spherical

surface.

the astigmatism produced by direct (normal) incidence on

an astigmatic refracting surface or surface of double curva-

ture (Chapter IX).

In the diagrams (Figs. 235, 236) , which show the meridian

section ZZ of a spherical refracting surface whose center is at

C and vertex at A (Fig. 235), the point designated by P (or Q)
represents an object-point which is the source of a narrow
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homocentric bundle of rays whose chief ray PB (or QB) is

incident on the surface at the point B at the angle of inci-

dence a. This ray crosses the axis at the point marked L
in Fig. 235 and the corresponding refracted ray crosses the

Fig. 236.—Sagittal section of narrow bundle of rays refracted at spherical

surface.

axis at I/. One of the principal sections of the bundle of in-

cident rays will be the meridian section (§§ 112, 113) made by
the plane containing the optical axis and the vertex P (or Q)
of the bundle, that is the plane of the paper; whereas the

other principal section, called the sagittal section (Fig. 236),

is made by a plane which intersects the meridian plane

at right angles along the chief ray of the bundle. The point

G (Fig. 235) is a point on the spherical refracting surface in

the meridian section, taken exceedingly close to the point B.

Likewise, the point D (Fig. 236) lies on the spherical refract-

ing surface very near to B ; but it is contained in the sagittal

section and is represented in the diagram as lying slightly

above the plane of the paper. The ray PG (Fig. 235) after

refraction meets the chief refracted ray at the image-point

P' of the narrow pencil of refracted meridian rays. Similarly,

the ray QD (Fig. 236) after refraction will meet the chief

refracted ray at the image-point Q' where the straight line

QC intersects this ray, as will be immediately obvious by
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supposing that the triangle QBQ' is revolved around the

central line QQ' as axis through a small angle out from the

plane of the paper. Thus, whereas the meridian section of

the bundle of refracted rays is contained in the same plane as

the meridian section of the bundle of incident rays, the sagit-

tal sections are in two different planes BDQ and BDQ' (Fig.

236) which intersect each other in a straight line perpendic-

ular to the meridian plane at the point B, that is, in the line

BD, which, since the point D is infinitely near to B, may be

regarded as a straight line.

185. Formula for Locating the Position of the Image-

Point Q' of a Pencil of Sagittal Rays Refracted at a Spher-

ical Surface.—As was explained (§ 184), the image-point Q'

(Fig. 236) in the sagittal section corresponding to the object-

point Q is at the point of intersection of the straight line QC
with the chief ray of the bundle of refracted rays. This con-

struction suggests at once a method of obtaining an analyt-

ical relation connecting the points Q and Q'; for if the straight

line QQ' is regarded for the time being as the axis of the spher-

ical refracting surface, and if we put g = BQ, q' = BQ' (where

the distances denoted by q, q' are to be reckoned positive or

negative according as they are measured from the incidence-

point B in the same direction as the light takes along the

chief ray or in the opposite direction, respectively), we have

merely to write q, q
r
in place of the symbols I, V in the formula

derived in § 180 in order to obtain the desired relation,

namely,

q' q

where the function denoted here by D is a constant for a

given chief ray and is defined by the following expression:

n _w'.cosa/—n.cosa_n.sin(a — a')

r r.sin a'

Thus having ascertained the path of the chief ray, and know-

ing the position of the object-point Q, that is, being given
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the value of q, we may calculate the value of q' by means of

the above formula and thus locate the position of the image-

point Q' of the sagittal section of the bundle of refracted rays.

186. Position of the Image-Point P' of a Pencil of Me-
ridian Rays Refracted at a Spherical Surface.—The angles

of incidence and refraction of the chief ray are denoted by

a, a', respectively. Moreover, let 6, d
f

(Fig. 235) de-

note the angles which the chief ray makes with the axis of

the spherical refracting surface before and after refraction,

respectively; and also let the central angle BCA be denoted

by 4>. Then for a contiguous ray in the meridian section

which is incident at the point G very close to the point B,

these angles may be denoted by a+da, a'+da'; d+dd,
B'+dd'; and <j)+d<j), where da, da', etc., denote the

little increments in the magnitudes of the angles a, a', etc.,

in passing from the chief ray to an adjacent ray in the merid-

ian section. Now since for the rays PB and PG these angles

are connected by the formulae (§ 180);

a= d+4>, a+da= d+dd+ct>+d<j),

we obtain by subtraction:

da = dd+d<f).

Around P as center and with radius equal to PB describe the

small arc BU which subtends ZBPG = <i0; so that we may
write:

, n arcBU
a u = ,

V

where p =BP denotes the distance of the object-point P from

the incidence-point B, being reckoned positive or negative

exactly in the same way as q in § 185. Now the sides of the

little curvilinear triangle BGU may be considered as straight

to the degree of approximation with which we are concerned

at present, and since the sides of the angle GBU are per-

pendicular to the sides of the angle of incidence a, so that

Z GBU = a, we obtain

:

arc BU = arc GB.cosa.
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Combining this relation with the one above, we have there-

fore :

in arc GB. cos a
dd = — .

V
Moreover, since Z GCB = dcf>,

, , arc GB
d<f> =——-;

and, therefore, by adding this equation to the last and taking

account of the relation above, we find

:

da- g-2!^. aw OB. (1)

Similarly, for the corresponding refracted rays BP' and

GP' which intersect at the image-point P', for which BP' =
p', we can derive the analogous relation

:

da'=g-^).awGB. (2)

Now according to the law of refraction,

ft.sina = ft'.sina', n.sin(a+da) = n''.sin( a' +d a')
,

and if in the expansions of sin(a+<ia) and sm(a'+da')

we write da and da' in place of sinda and sinda' and put

cosd a = cosd a' = 1, as is permissible on account of the small-

ness of these angles, we may derive the following relation

between d a and d a'

:

nxosa.da = n'.cosa'.da'. (3)

Hence, multiplying equation (1) by n.cosa and equation (2)

by n'.cos a', and equating the two expressions thus obtained,

according to equation (3), we find, after removing the com-

mon factor, arc GB, the following formula connecting the

ray-intercepts p and p'

:

, , /cos a' \\ /cos a 1\
n.cosa (

—— — - ) =n.cosa( — -) :

V p r! \ p rl

which may also be written thus:

n'. cos2 a/_ft.cos2 a _ ~— —
P

u
'

where the symbol D has the same meaning as before in § 185.

If we introduce Abbe's differential notation and use the
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operator A placed in front of a symbol to denote the differ-

ence in the value of the magnitude denoted by the symbol

before and after refraction, that is, for example, if £±z = z'— z;

then we may write the two formulae for p and q in the

following abbreviated form:

\n _ A^-cos2 a_ nq~
p

The position of the image-point P' of the meridian section

of a narrow bundle of rays refracted at a spherical surface

may also be quickly ascertained by a simple geometrical

Fig. 237.—Construction of center of perspective (K) with respect to a given

ray refracted at a spherical surface.

construction which depends on finding a point K called the

center of perspective, which bears precisely the same relation

to the pair of points P, P' as the center C of the spherical

surface bears to the pair of points Q, Q' (§ 184) ; that is, just

as the straight line QQ' must pass through C, so also the

straight line PP' must pass through K. The existence of

this point K was first recognized by Thomas Young (1801).

In the diagram (Fig. 237) the chief incident ray is represented

by the straight fine RB and the chief refracted ray, con-

structed by the method given in § 175, is represented by the

straight fine BT. From the center C draw CY and CY'

perpendicular to RB and BT at Y and Y', respectively. The
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point K will be found to lie at the point of intersection of the

straight lines YY' and SS'; and hence if P designates the

position of an object-point lying anywhere on the chief in-

cident ray, the corresponding image-point P' in the meridian

section will lie at the point where the straight line PK meets

the chief refracted ray. This beautiful construction is ex-

ceedingly useful in graphical methods of investigating the

imagery in the meridian section along a particular ray. The
proof of the construction is not at all difficult, but it cannot

be conveniently given here.

187. Measure of the Astigmatism of a Narrow Bundle of

Rays.—We have seen that, in general, a narrow homocentric

bundle of rays falling obliquely on a spherical refracting

surface is transformed into an astigmatic bundle of refracted

rays, so that corresponding to a given object-point P (or Q)
there will be two so-called image-points P' and Q' lying on

the refracted chief ray at the points of intersection of the

rays of the meridian and sagittal sections, respectively. The
interval between these image-points, that is, the segment

P'Q' = q' — p' is called the astigmatic difference. However, it

is more convenient to measure the astigmatism by the dif-

ference between the reciprocals of the linear magnitudes p'

and q'. If, for example, according to the system of notation

introduced in § 106, we put

n/p=P, rt/p'=P', n/q = Q, n'jq'^Q',

the formulae derived in §§ 185, 186 may be written as follows:

Q'-Q = P'.cos2 a'-P.cos2 a = D;

where, on the assumption that the meter is taken as the unit

of length, the magnitudes denoted by the capital letters will

all be expressed in terms of the dioptry. The astigmatism

of the bundle of refracted rays is measured by (P f— Q r

) . If

the bundle of incident rays is homocentric (Q = P), the as-

tigmatism of the bundle of refracted rays will be

:

P'-Q'= P'.sin2
a'- P.sin 2

a.

Accordingly, we see that the astigmatism of a bundle of

rays refracted at a spherical surface will vanish provided
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Q =P and P'.sin 2
a'— P.sin 2 a = 0; which may happen in

two ways, as follows:

(1) If a' = a = 0, that is, if the chief ray of the narrow

bundle meets the refracting surface normally, as, for ex-

ample, when it is directed along the axis, then no matter

where the object-point may lie, the two image-points will

coincide. In fact, in case of the axial ray we may put Q =

P=U, Q' =P f=U f

, D = F, so that the formulae for the me-

ridian and sagittal sections both reduce in this case to the

fundamental equation for the refraction of paraxial rays at

a spherical surface, namely, U' = U+F.

(2) But for any value of a, we shall have P' — Q' = 0,

that is, P'.sin2
a' = P.sin2

a, provided P7n' 2 = P/n2 or

n'.p' = n.p. In this case the points designated by P, P'

(or Q, Q') are identical with the points S, S' in Figs. 226 to

229. If the vertex of the homocentric bundle of incident rays

lies at any point S on the surface of the sphere described

around C as center with radius equal to n'.rjn, the bundle

of refracted rays will likewise be homocentric with its ver-

tex at the corresponding point S' on the surface of the con-

centric sphere of radius n.r/n' (see § 177).

188. Image-Lines (or Focal Lines) of a Narrow Astig-

matic Bundle of Rays.—In all the preceding discussion of

the properties of an astigmatic bundle of rays, it cannot have

escaped notice that only such rays have been considered as

are contained in the two principal sections of the bundle. If

there were no other rays to be taken into account besides

these, we might say that to each point of the object P (or Q)

there corresponded two image-points P' and Q'. But this is

by no means a complete or even approximately complete

statement of the image-phenomenon in this case; for, indeed,

the rays which he in neither of the two principal sections do,

as a matter of fact, constitute by far the greater portion of

the total number of rays of the bundle. According to the

theorem of Sturm (1803-1855), the constitution of a narrow

bundle of rays is exhibited in the accompanying diagram
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(Fig. 238) called Sturm's conoid (§ 113). All the rays of the

bundle pass through two very short focal lines or image-lines

XX and YY which are both perpendicular to the chief ray.

The image-line XX which goes through the point of intersec-

tion P' of the meridian rays lies in the plane of the sagittal

section; and, similarly, the image-line YY which goes through

the point of intersection Q' of the sagittal rays lies in the

Fig. 238.

—

Sturm's conoid.

plane of the meridian section. Strictly speaking, this theo-

rem can be regarded as representing the actual facts only on

the assumption that the bundle of rays is infinitely thin ; and

on this assumption the entire bundle may be conceived as

generated by a slight rotation either of the meridian section

around the image-line YY as axis, whereby the point P' will

trace the image-line XX, or of the sagittal section around

the image-line XX as axis, whereby the point Q' will trace

the image-line YY. Thus, according to Sturm's theorem,

with an object-point P (or Q) lying on the chief ray of an

infinitely narrow bundle of incident rays there are associated

two exceedingly tiny image-lines lying in the principal sec-

tions of the bundle of refracted rays at right angles to the

chief ray. Not only as to the orientation of the image-lines

of Sturm, but as to their practical, nay, even as to their

mathematical existence, there has been much controversy,

but we cannot enter into this discussion here. In spite of

its limitations and admittedly imperfect representation,

Sturm's conoid remains a very useful preliminary mode of

conception of the character of a narrow astigmatic bundle
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of rays. The only proper way of arriving at a more accurate

knowledge of the constitution of a bundle of light-rays is by

the aid of the powerful methods of the infinitesimal geom-

etry. Mathematical investigations of this kind have been

pursued with great skill by Gullstrand whose writings con-

tained in a series of published papers and treatises dating

from about 1890 have extended the domain of theoretical

optics far beyond the narrow limits imposed upon it by

Gauss and the earlier writers on this subject.

189. The Astigmatic Image-Surfaces.—Thus, the effect

of astigmatism is that the rays of a narrow oblique bundle,

instead of being brought to a focus at a single point, pass

through two small focal lines at right angles to the path of

ccv

oo

oc-

cc-

Fig. 239.—Astigmatic image-surfaces.

the chief ray in the image-space. If the chief rays proceeding

from the various object-points lying in a meridian plane of a

symmetrical optical instrument are constructed, and if along

each of these rays the positions of the image-points P', Q' of

the pencils of meridian and sagittal rays are determined, the

loci of these points will be two curved lines, both symmetri-

cal with respect to the axis, which touch each other at their

common vertex on the axis. In the diagram (Fig. 239) the

object is supposed to be infinitely distant, as, for example,

in the case of a landscape photographic lens. The contin-
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uous curved line represents the locus of the points of inter-

section of the sagittal rays, whereas the dotted curve repre-

sents the locus of the points of intersection of the meridian

rays. These curved lines are the traces in the meridian plane

of the two astigmatic image surfaces which are generated by
revolving the figure around the axis of symmetry. The two
image-surfaces which correspond to a definite transversal

plane in the object-space, and which are the loci of the most

sharply defined images of object-points lying in this plane, are

not to be confused with the two sheets of the caustic surface

of a wide-angle bundle of rays emanating from a single point

of an object (§ 183). The focal lines of the narrow pencils of

meridian rays lie on one of these surfaces and the focal lines

of the narrow pencils of sagittal rays lie on the other surface.

The positions and forms of the image-surfaces will depend

essentially on the place of the stop; for it is evident that if

the stop is shifted to a different place, the chief ray of each

bundle (§§ 140, 184) will be a different ray, and the points

P' and Q' will all occupy entirely different positions. If a

curved screen could be exactly adjusted to fit one of the

image-surfaces, a fairly sharp image of the object might be

focused on it, but not only would the image be curved in-

stead of flat, but there would also be a certain astigmatic

deformation due to the fact that each point of the object

would be reproduced not by a point but by a little focal line,

as has been explained. Between the two image-points P' and
Q' on each chief ray there lies a certain approximately circu-

lar cross-section of the narrow astigmatic bundle known

(§ 113) as the "circle of least confusion," and the locus of

the centers of these circles will lie on a third surface interme-

diate between the other two, which is sometimes taken as a

kind of average or compromise image-surface.

There can be no doubt that astigmatism of oblique bundles

is responsible for serious defects in the image produced by
an optical instrument, and much pains has been bestowed on

trying to remedy this fault as far as possible. Fortunately,



538 Mirrors, Prisms and Lenses 189

-5 +2

the possibility of abolishing astigmatism of this kind, that

is, of making the two image-surfaces coincide in a single

surface, is afforded by the fact that the astigmatic difference

(§ 187) is opposite in sign according as the refracting surface

is convergent or divergent. For example, Fig. 240 shows

graphically the opposite

effects of a convergent

and a divergent spheri-

cal refracting surface

under otherwise equal

conditions. The two
curves on the left-hand

side relate to the con-

vergent system, and the

Fig. 240.—Astigmatism of convergent two Curves On the right-
spherical refracting surface (plotted , , •-, -, , , ,, .

on the left) and astigmatism of diverg- nana- siae relate tO tUe

ent spherical refracting surface (plotted divergent System
J
and

on the right). ,1 , , -,

we see that not only are

the curvatures opposite in the two cases, but the relative

positions of the curves are different. It will not be difficult

to understand that it may be possible, by suitable choice of

the radii of the refracting surfaces and of their distances

apart and also of the position of the stop, to design a system

which will be free from astigmatism at any rate for a certain

zone of the lens; so that, although we may not be able to

make the two astigmatic image-curves coincide absolutely

throughout their entire extent, we may contrive so that the

two curves are nowhere very far apart, while at one point,

corresponding to the corrected zone, they actually intersect

each other.

190. Curvature of the Image —Now let us suppose that

the astigmatism of oblique bundles has been completely

abolished for a certain angular extent of the field of view, so

that at last there is strict point-to-point correspondence by

means of narrow bundles of rays between object and image.

The two image-surfaces have thus been merged into one, and
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over this surface, within the assigned limits, the definition

of the image is clear-cut and distinct. There still remains,

however, another trouble due to the fact that the image is

curved and not flat; consequently, if the image is received

on a plane focusing screen, only those parts of the stigmatic

image which lie in the plane of the screen will be in focus

(Fig. 241), whereas the. rest of the image on the screen will

be blurred.

Now this error of the curvature of the image cannot be

Stigmatic
Surtax

Focus
Scrc«U

Fig. 241.—Curvature of stigmatic image.

overcome by employing methods similar to those above de-

scribed for the abolition of astigmatism. For the correction

of the latter error the particular kinds of glass of which the

lenses were made were not essential; whereas with unsuitable

kinds of glass there is no choice of the radii, thicknesses, etc.,

which will yield an image which is at the same time stig-

matic and flat. This fact was well known to Petzval (1807-

1891). Petzval's formula (published in 1843) for the abo-

lition of the curvature of a stigmatic image produced by a

system of infinitely thin lenses in contact with each other is

F
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where Fj denotes the refracting power and n
x
denotes the

index of refraction of the ith lens of the system. This

formula is equivalent also to the following statement: The

curvature of the stigmatic image of an infinitely distant

object in a system of lenses whose total thickness is negli-

gible is equal to

- 2 (refracting powers of all lenses of index n)
\

n J

The general principal of this equation was discovered by Airy

and was given by Coddington in his treatise published in

1829. Seidel pointed out that the two faults of astigmatism

and curvature could not both be corrected at the same time

unless some of the convex lenses of the system were made of

more highly refracting glass than the con-

cave lenses. Now with the varieties of
pf

glass which were available before the

production of the modern Jena glass,

this requirement was directly opposed to

the condition of achromatism, and as the

latter error was considered more serious

than the curvature-error, the earlier lens-

Ff
designers made no attempt to obtain a

Fig. 242. — stigmatic ga^ stigmatic image. But with the new
image in trans- . . _ - _ .. . ., .

versai focal plane kinds of glass now at our disposal, It IS

for a given zone possible to design the optical system so

that not only is the astigmatism corrected

for a certain zone, as explained in § 189, but the point of in-

tersection of the two image-lines lies in the same transversal

plane as the axial point where the two image-lines touch

each other (Fig. 242). Accordingly, we may say that for

this zone the image is both flat and stigmatic. The construc-

tion of modern photographic lenses which are practically

free from these spherical errors is an almost unsurpassed

triumph of human ingenuity.

191. Coma.—Astigmatism implies that the bundles of

rays concerned in producing the image are very narrow, and
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this means that the diameter of the stop is very small. But
the validity of the assumptions which are at the foundation

of geometrical optics begins to be caUed in question in the

case of narrow bundles of rays, as was pointed out in § 175;

so that we must be careful here not to push our conclusions

too far. As a matter of fact, in various optical instruments

and particularly in some modern types of photographic

lenses, the diameter of the stop is by no means small and the

Fig. 243.—Symmetrical character of sagittal section.

field of view is extensive. The spherical aberrations which

are encountered in an optical system of this kind are of an

exceedingly complicated nature which cannot be described

here in detail.

A bundle of rays of finite aperture emanating from a point

outside the optical axis will show aberrations of a general

character similar to the aberrations along the axis of a direct

bundle of rays (§ 178). But the effects in the two principal

sections of the bundle will be very different from each other;

because, whereas the rays in the sagittal section, being sym-

metrically situated on opposite sides of the meridian plane,

are therefore symmetrical with respect to the chief ray, as

represented in Fig. 243, there will, in general, be a complete

absence of symmetry in the meridian section (Fig. 244) . The
image (if indeed we may continue to use this term) of an

extra-axial object-point under such circumstances will be

at best an element of one or other of the two sheets of the

caustic surface. Usually, however, what is called the image
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is the light-effect as obtained on a focusing screen placed at

right angles to the axis at the place where the central parts of

the object are best delineated. The appearance on the screen

may be described as a kind of balloon-shaped flare of light,

Fig. 244. -Unsymmetrical character of meridian section,

coma.
giving rise to

with a bright nucleus growing fainter as it expands in some

cases towards, in other cases away from, the axis. This de-

fect of the image is known to practical opticians as side-flare

or coma (from the Greek word meaning "hair" from which

the word "comet" is likewise indirectly derived). The def-

inition in the outer parts of the field of the object-glass of a

telescope depends on the removal of this error; and this ap-

plies also to the case of a wide-angle photographic lens. The

only way to obtain a really clear and accurate conception of

this important spherical aberration is to study the forms of

the two sheets of the caustic surface. Generally speaking,

we may say that the convergence of wide-angle bundles of

rays will be better in the case of an optical system which has

been corrected for astigmatism, but even then there will be

lack of symmetry in all the sections of a bundle of rays ex-

cept in the sagittal section. If the slope of the chief ray is

comparatively slight, although not negligible, the condition

of a sharp focus is equivalent to Abbe's sine-condition (§ 182).

But for greater inclinations of the chief rays, it will generally

be necessary to resort to the exact methods of trigonometri-
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cal calculation of the ray-paths in order to determine the

nature and degree of the convergence.

192. Distortion; Condition of Orthoscopy.—Let us assume

that the system has been corrected for both astigmatism and

curvature of the image, in the sense explained in § 190; so

that by means of narrow bundles of rays a flat stigmatic

image is obtained of a plane object placed at right angles to

the axis. The next question will be to inquire whether the

image is a faithful reproduction of the object or whether it is

distorted. If the image in the " screen-plane " (§ 134) is

geometrically similar to the object-relief projected from the

center of the entrance-pupil on the " focus-plane " (§ 141),

then we may say that the optical system is orthoscopic or

free from distortion.

The dissimilarity which may exist between an object and

its image is a fault of an essentially different kind from those

which have been previously considered, and there is no in-

Focus - Piano Screen- Plane

Fig. 245.—Condition of orthoscopy (freedom from distortion)

.

timate connection between this defect and the others. Here

we are not concerned so much with the quality and defini-

tion of the image on the screen as with the positions of the

points where the chief rays cross the screen-plane. The po-

sitions of these representative points will not be altered by

reducing the stop-opening (§§ 141, 142); and accordingly the

image in the screen-plane is to be regarded merely as a cen-

tral projection on this plane along the chief rays proceeding

from the center of the exit-pupil.



544 Mirrors, Prisms and Lenses [§192

In the diagram (Fig. 245) the centers of the entrance-pupil

and exit-pupil of the optical system are designated by and
0'. The straight lines PO, P'O' represent the path of a chief

ray which crosses the focus-plane in the object-space at the

point P and the screen-plane in the image-space at the point

P'. If ?/ = MP, s/'
= M'P' denote the distances of P, P' from

the axis, then the condition that the image in the screen-

plane shall be similar to the projected object in the focus-

t a
Fig. 246. -Object (a) reproduced by image (b) barrel-shaped distortion

or by image (c) cushion-shaped distortion.

plane, that is, the condition of orthoscopy (freedom from

distortion) is that the ratio y'/y shall have a constant value

for all values of y within the limits of the field of view. If,

on the contrary, this is not the case, and if the ratio y'/y is

variable for different values of y, then the image will be dis-

torted ; and this distortion will be one of two kinds according

as the ratio y'/y increases or decreases with increase of y.

For example, if the object is in the form of a square, as shown

in Fig. 246, a, then, on the supposition that y'/y decreases

as y increases the image of the diagonal will be shortened

relatively more than the image of a side of the square, and

the square will be reproduced by a curvilinear figure with

convex sides as shown in Fig. 246, b; this is the case of barrel-

shayed distortion, as it is called. On the other hand, if the

ratio y'/y increases in proportion as the object-point is taken

farther and farther from the axis, we have the opposite type

known as cushion-shaped distortion (Fig. 246, c).

If in Fig. 245 we put OM = z, 0'M' = z', ZMOP = w,
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Z M'O'P' = a/, the condition of orthoscopy may be expressed

as follows

:

y' z'.tano/— = = constant:
y 2.tana;

and if we assume, as has been tacitly assumed in the pre-

ceding discussion, that the chief rays all pass through the

pupil-centers O, O', so that the abscissae denoted by z, z' have

the same values for all distances of the object-point P from

the axis, then we derive at once Airy's tangent-condition of

orthoscopy, namely, tana/ : tan co = constant. But although

a chief ray must pass through the center of the aperture-

stop (§ 140), it will not pass through the centers of the pupils

unless the latter are free from spherical aberration. The
constancy of the tangent-ratio by itself is not a sufficient

condition for orthoscopy; in addition, the spherical aberra-

tion must be abolished with respect to the centers of the

pupils.

If the optical system is symmetrical with respect to an in-

terior aperture-stop, the tangent-condition will be immedi-

ately satisfied, because on account of the symmetry of the

two halves of the system, every chief ray will issue in exactly

the same direction as it had on entering, and therefore

tan0: tan0' = l. Accordingly, if a "symmetric doublet"

of this kind is spherically corrected with respect to the center

of the aperture-stop, it will give an image which will be free

from distortion.

193. SeidePs Theory of the Five Aberrations.—In the

theory of optical imagery which was developed according to

general laws first by Gauss (§ 119) in his famous Dioptrische

Untersuchungen published in 1841, the fundamental assump-

tion is that the effective rays are all comprised within a nar-

row cylindrical region of space immediately surrounding the

optical axis; this region being more explicitly defined by the

condition that a paraxial ray is one for which the angle of

incidence (a) and the slope-angle ( 6 ), in the case of each

refraction or reflection, are both relatively so minute that the
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powers of these angles higher than the first can be neglected

(§ 63). Evidently, therefore, Gauss's theory is applicable

only to optical systems of exceedingly small aperture and

limited extent of field of view. But with the development

of modern optical instruments and especially with the in-

crease of both aperture and field demanded for certain types

of photographic lenses, it became necessary to take account

of rays which lie far beyond the narrow confines of the central

or paraxial rays. Long prior to the time of Gauss important

contributions to the theory of spherical aberrations had been

made in connection with certain more or less special problems

;

but the first successful attempt to extend Gauss's theory in

a general way by taking account of the terms of higher orders

of smallness was made by Seidel (1821-1896) in a re-

markable series of papers published between the years 1852

and 1856 in the Astronomische Nachrichten. Seidel's

method consisted in tracing the path of the ray through the

centered system of spherical refracting surfaces and in de-

veloping the trigonometrical expressions in series of ascend-

ing powers which were finally simplified by neglecting all

terms above the third order. If the ray-parameters are re-

garded as magnitudes of the first order of smallness, it is

easy to show that on account of the symmetry around the

optical axis these series-developments can contain only terms

of the odd orders of smallness; so that in Seidel's theory

the terms neglected are of the fifth and higher orders. It is

impossible to describe here in detail the elegant mathemati-

cal treatment by which Seidel was enabled to arrive at

his final results; suffice it to say, that he obtained a sys-

tem of formulae from which it was possible to ascertain the

influence both of the aperture and the field of view on the

perfection of the image. In Seidel's formulae the aber-

rations of the ray, that is, its deviations from the path pre-

scribed by Gauss's theory, are expressed by five different

sums, denoted by Si, $2, S3, S i} and S 5 , which depend only on

the constants of the optical system and the position of the
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object-point, and which are, in fact, the coefficients of the

various terms in the equations. The condition that there

shall be no aberration demands that all of these five sums

shall vanish simultaneously, that is,

oi = 02 = 03 = 04 = 05 = 0.

If, on the other hand, these conditions are not satisfied, the

image yielded by the lens-system will not be faultless; and

therefore it will not be without interest to inquire more par-

ticularly into the separate influence of each of these five ex-

pressions which occur in Seidel's formulae.

Thus, for example, if the optical system is designed so that

Si = 0, then there will be no spherical aberration at the center

of the field (§ 178) for the given position of the axial object-

point. And if not only $1 = but also $2 = 0, then there

will be no coma (§ 191). The condition S2 = means also

that Abbe's sine-condition (§ 182) will also be satisfied, so

that the image of the parts of the object in the immediate

vicinity of the axis is sharply defined.

But even when we have 0*1 = 0*2 = 0, the optical system

will, in general, still be affected by astigmatism of oblique

rays (§ 184), so that an object-point lying at some little dis-

tance from the axis will not be reproduced by an image-point

but at best by two short focal lines at different distances

from the lens-system and directed approximately at right

angles to each other. Moreover if the distance of the object-

point from the axis is varied, the positions of these two focal

lines will vary also both with respect to their distance from

the lens-system and with respect to their mutual distance

apart. In other words, when both Si and $2 vanish, then, in

general, there is no unique image of a transversal object-

plane, but this latter may be said to be reproduced by two

so-called image-surfaces (§ 189) which are surfaces of revolu-

tion around the optical axis and which unite and touch each

other at the point where the axis crosses them. The ex-

pressions for the curvatures of these surfaces at this common
point of tangency are given by Seidel's sums £3 and
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St; so that if also $3— #4 = 0, the two image surfaces will

coalesce and now the image of the plane object will be sharply

denned, that is, stigmatic, although it will usually still be

curved. But if also S 3 = Si = 0, the image will be both plane

and stigmatic. However, it may still show unequal magnif-

ications toward the margin, which means that there is dis-

tortion (§ 192). This last error will be abolished provided

aS5 = 0; and now the image may be said to be ideal inasmuch

as it is flat and sharply defined not only in the center but

out .toward the edges and is at the same time a faithful re-

production of the plane object.

To attempt to derive Seidel's actual formula? or even

to discuss the equations would be entirely beyond the scope

Fig. 247.—Diagram representing the (i—l)th and ith lenses of a system of

infinitely thin lenses.

of this volume. But it may be convenient to insert here

without proof the expressions of Seidel's five sums for

the comparatively simple case of an optical system considered

as composed of a series of m infinitely thin lenses each sur-

rounded by air.

Let Ai (Fig. 247) designate the point where the optical axis

crosses the ith lens of the system, the symbol i being employed

to denote any integer from 1 to m; and let us consider two
paraxial rays which traverse the optical system, one of which

emanating from the axial object-point Mi (AiMi=Wi) and

meeting the first lens at a point Bi such that A]Bi = /ii,

crosses the axis after passing through the (i— l)th lens at a

point Mi (A
i
M

i
= w

i) and meets the ith lens at a point B
A
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such that AiBi = h
Y
whereas the other ray, which emanates

from an extra-axial object-point and which in the object-

space passes through the center Oi of the entrance-pupil

(§ 139) of the system (AiOi = si) and meets the first lens at

a point Gi such that gfi = AiGi, crosses the axis after passing

through the (i— l)th lens at a point Oi AiOi = Si) and meets

the ith lens at a point Gj such that AiGi = g^ Then if we put

Ui= l/ui, £i=l/si,

it may easily be shown that

9i(Si
+F

i)=gi+i.Si+1 ;

where F
{
denotes the refracting power of the ith lens. Now

if ft; denotes the index of refraction of the ith lens and if R[

denotes the curvature of the first surface of this lens; and if,

further, for the sake of brevity, the symbols A i} B-lf Cl} Di}

and E{ are introduced to denote the following functions of

nu Fh Rv U\ and Si, namely:

Ai=
nJ+? FiR\- (4(^+0^ 2^+1 1

m { m m-l J

m m-l \m-l'

m [ m m-l J

+
nj±i Fim+ 2̂ ±i FiUisi+

2-^mm m m -

1

+J* F%+ (JH-Yf\;m-l \m-l/

Ci =
3(«i±2)m_ (6^+1)^^3(2^+1) F \ FiRi

+i Fim+2{3n
' +2W+3-^f&

m m Wi

m-l m-l \m-i/ >
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Di = '2-LZ FiR\- t^L^ (Ui+Sd+^~ F
{ FiRi+^FiUi

m { rii ?2i-l
J ?ii

ni ?2i-

1

+^?Si+(3_)V?;m-l Vm-l/

Wi ?2i— 1 rzi-1 \ni-l/

then Seidel's formulae for the spherical errors of a sys-

tem of m infinitely thin lenses may be expressed as follows:

i==m
/7>-\ 4 i=m /h\ s n-

S3=I(|i.^)ci; ^(fi.^A;
i=i V/ii fifi/ i=i \/ii 0i/

i=ihi\gi/

The greatest practical value of these formulae is to guide

the optician to a correct basis for the design of his instrument

and to supply him, so to speak, with a starting point for a

trigonometrical calculation of the optical system which he

aims to achieve. But the reader who wishes to pursue this

subject further will find it necessary to consult the more ad-

vanced treatises on applied optics.
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PROBLEMS

1. If L, L' designate the points where a ray crosses the

axis of a spherical refracting surface before and after refrac-

tion, respectively, and if C designates the center of the sur-

face, show that

0+0'
, ,

cos
n n n —n 2

a -|-
a'

cos-
2

where c = CL, c' = CL', a, a' denote the angles of incidence

and refraction, 6, 6
r denote the slope-angles of the ray

before and after refraction, r denotes the radius of the sur-

face, and n, n' denote the indices of refraction. Also, show

that

a' +6'

c +r
sin 0cos-

c+r . Ql a+
sin o cos-

2

2. A ray parallel to the axis meets the first surface of a

glass lens (index 1.5) at a height of 5 cm. above the axis, and

after emerging from the lens crosses the axis at a point I/.

The thickness of the lens is 1 cm. Determine the aberration

F'L', where F' designates the position of the second focal

point, for each of the following cases: (a) First surface of

lens is plane and radius of curved surface is 50 cm.; (6)

Second surface of lens is plane and radius of curved surface

is 50 cm.; and (c) Lens is symmetric, radius of each surface

being 100 cm.

Ans. (a)/=±100cm.,F'L'=q=1.13 cm.; (6)/==*= 100cm.,

W=^f0.29 cm.; (c) /==»= 100.17 cm., F'L'==f0.42 cm.;

where in each case the upper signs apply to positive lens and

the lower signs apply to negative lens.

3. An incident ray crosses the axis of a lens at an angle 6\

and meets the first surface at a point Bi, the angle of inci-

dence being en; the slope of the refracted ray BiB 2j which
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meets the second surface at the point B 2 is 2 , and the angle

of incidence at this surface is a2 . If the radii of the surfaces

are denoted by ri and r2 , show that

r2.sin(ci2— #2)— ri.sin(ai— 00
-D1-D2 = :

—

5
.

sin C/ 2

4. The chief ray of a narrow bundle of parallel rays is in-

cident on a spherical mirror of radius 32 cm. at an angle of

60°. Find the distance between the two image-points P'

and Q' of the bundle of reflected rays. Ans. 24 cm.

5. The chief ray of a narrow bundle of parallel rays is in-

cident on a spherical mirror of radius r at a point B, the angle

of incidence being 60°. Determine the positions of the image-

points P' and Q'. Ans. BP' = r/4, BQ' = r.

6. A narrow bundle of parallel rays in air is refracted at

a spherical surface of radius r into a medium whose index of

refraction is -y/s. If the angle of incidence is 60°, find the

positions of the image-points P' and Q'.

Ans. p' = 3rV3/4, g'=r\/3.
7. A narrow bundle of parallel rays is incident on a spheri-

cal refracting surface at an angle of 60°. If the meridian rays

are converged to a focus at a point P' lying on the surface of

the sphere, show that the angle of refraction of the chief ray

is equal to the complement of the critical angle of the two

media.

8. The radius of each of the two surfaces of an infinitely

thin double convex lens is 8 inches, and the index of refrac-

tion is equal to \/S. The chief ray of a narrow bundle of

parallel rays inclined to the axis at an angle of 60° passes

through the optical center of the lens. Find the positions of

the foci of the meridian and sagittal rays.

Ans. The focal point of the meridian rays is 1 inch and

that of the sagittal rays is 4 inches from the optical center.

9. If in Young's construction of a ray refracted at a spher-

ical surface (§ 176) a semi-circle is described on the incidence-

radius BC as diameter intersecting the incident and refracted

rays in the points Y, Y', respectively, show that the straight
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line YY' is perpendicular to the straight line CS. The point

K where the straight lines YY' and CS meet is the center of

perspective of the range of object-points lying on the inci-

dent ray and the corresponding range of meridian image-

points lying on the refracted ray (see § 186). Show that

nTr _ n.r.sin
2 a0K w—>

and that

tanZBKC = tana+tana'.

10. If the chief ray of a narrow homocentric bundle of

rays is incident on a plane refracting surface at a point B,

and if a, a' denote the angles of incidence and refraction,

show that

BP' =Hl^Jl . BP, BQ' = - . BQ,
n cos2 a n

where P (or Q) designates the position of the vertex of the

incident rays and P' and Q' designate the positions of the

image-points of the meridian and sagittal rays, respectively.

11. In the preceding problem show that the straight line

QQ' is perpendicular to the plane refracting surface.

12. The position of the image-point P' of a pencil of me-

ridian rays refracted at a plane surface may be constructed

as follows: Through the object-point P (or Q) draw PQ' per-

pendicular to the refracting plane and meeting the chief re-

fracted ray in Q'; and from P and Q' draw PX and Q'Y per-

pendicular to the incidence-normal at X and Y, respectively.

Draw XG perpendicular to the chief incident ray at G and

YG' perpendicular to the corresponding refracted ray at G'.

Then the straight line PP' drawn parallel to GG' will inter-

sect the chief refracted ray in the required point P'. Using

the result of No. 10 above, show that this construction is

correct.

13. The chief ray RB of a narrow pencil of sagittal rays

meets a spherical refracting surface at the point B and is re-

fracted in the direction BT. Through the center C draw CV
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parallel to BT meeting BR in V and CV parallel to BR meet-

ing BT in V. If Q, Q' designate the positions of the points

of intersection of the sagittal rays before and after refraction,

respectively, and if BQ = g, BQ,' = q', show that

BV BV ,+— =1,
Q 2

and that

VQ.V'Q' = VB.V'B.

(Compare this last result with the Newtonian formula for

refraction of paraxial rays at a spherical surface, viz., x.x' =

14. The chief ray RB of a narrow pencil of meridian rays

meets a spherical refracting surface at the point B, and is re-

fracted in the direction BT. Through the center of perspec-

tive K (see § 186; see also problem No. 9 above) draw KU par-

allel to BT meeting BR in U and KU' parallel to BR meeting

BT in U\ If the positions of the points of intersection of the

meridian rays before and after refraction are designated by P
and P', respectively, and if BP = p, BP' = p', show that

BU BU' ,

V V
and that

UP.U'P' = UB.U'B.

(Compare this result with that of the preceding problem.)

15. If J, J' designate the positions of the aplanatic points

of a spherical refracting surface, and if 6, 6' denote the

slopes of the incident and refracted rays BJ, BJ', respec-

tively, show that

sin 8 _ n'

s!nT'~n
' Vi

where y denotes the magnification-ratio for paraxial rays.

16. A. Steinheil's so-called "periscope" photographic

lens is composed of two equal simple meniscus lenses, both

of crown glass, separated from each other with a small stop

midway between. The data of the system, as given in Von
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Rohr's Theorie und Geschichte des photographischen Objektivs

(Berlin, 1899), p. 288, are as follows:

Indices: ni=nz=ns= l; ^2=^4= 1.5233

Radii: r\= — r 4= +17.5 mm.; r2= — r 3 = +20.8 mm.
Thicknesses: di = d z — +1.3 mm.; d2 = 12.6 mm.

Distance of center of stop from second vertex of first lens

= +6.3 mm. ; diameter of stop = 2.38 mm. ; diameter of each

lens = 11.32 mm.
Employing the above data, determine (1) the position and

size of the entrance-pupil, (2) the angular extent of the field,

(3) the position of the second focal point F'; and (4) the

point where an edge-ray directed towards a point in the

circumference of the entrance-pupil and parallel to the axis

crosses the axis after emerging from the system.

Ans. (1) Distance of center of entrance-pupil from second

vertex of first lens is +6.45 mm.; diameter of entrance-

pupil is 2.53 mm. (2) The angular extent of the field is

nearly 90°
. (3) Distance of F' from last surface is A4F' =

+90.946 mm. (4) The edge-ray crosses the axis at a dis-

tance A 4L 4 = +90.432 nun.

17. The abscissae of the points Mk , Mk+ i where a par-

axial ray crosses the axis of a centered system of m spherical

refracting surfaces before and after refraction at the &th sur-

face are denoted by uk =AkMk , wk ' = AkMk+ i. If the ray

proceeds in the first medium of index n\ in a direction par-

allel to the axis, it may be shown (cf. problems Nos. 16 and

17, end of Chapter X) that the primary focal length of the

system is given by the formula

f_ U2- Us • • . Um (TT _ n\

f-w.u t'...um
" (Ul -°h

where Uk = nk/uk , Uk
' = nk+ i juk . Having calculated the

path of the paraxial ray in the preceding problem, em-

ploy the above formula to determine the focal length of

Steinheil's "periscope." Ans. /= +98.696 mm.
18. The path of a chief ray which in traversing the air-

space between the two lenses of Steinheil's " periscope

"
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(see No. 16) goes through the center of the stop will be sym-
metrical with respect to the two parts of the optical system,

so that for such a ray we must have

:

Ca=— ci, c 4
=— ci, C3=—c2 , c 3=—

c

2
';

a 4= a/, a/=ai, ct3= a-2, a 3
/= a2 ;

0$= 6

1

} 6i= Si.

Show that if 3 = — 30° for a ray which goes through the

stop-center, the ray must have been directed initially at a

slope-angle di= — 28° 2' 54.43" towards a point Li on the

axis whose distance from the second vertex of the first lens is

A 2Li = +6.563 mm.
19. The astigmatism of a narrow bundle of rays refracted

through a centered system of spherical surfaces may be com-

puted logarithmically by means of the following recurrent

formulae

:

wk.sin(ak—

a

k ')

Dt =
rk.sm ak

/ik = rk.sin(ak— k), tk =
*k +1

wk+ i.sin0k +i

'

Sagittal Section

Qk =Qk+Dk , Qk +1 =
l-fc.Qk'

'

Meridian Section

p ,_ Pk .eos
2 ak+Dk Pk

'

m

cos2 ak 1-ikA
where the symbols a, a', 0, n and r have their usual mean-

ings and where P, P' and Q, Q' and D are the magnitudes de-

fined in §§ 186 and 184. The calculations according to these

formulae will be considerably simplified in the case of a chief

ray which traverses a system like Steinheil's " periscope"

(see No. 16) which is symmetric with respect to the stop-

center. For example, for this particular system we can write

for a chief ray:
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Di = D\, D 3 =D 2 , h±= — hi, hz = —h2 , h = ti;

0.1— Oi = — (oi— 0.4), o2— o2
' = — (a.3— a3')>

ai— B\= a/— 6 b
— a«- # 4 , a2— 62 = 0,3— Q\= Oz— Oz.

Apply the above formulae to the optical system of problem

No. 16 to calculate the astigmatic difference (§ 186) of a nar-

row bundle of emergent rays whose chief ray is the ray whose

path was determined in problem No. 18; assuming that the

bundle of incident rays was cylindrical, that is, Pi = Qi = 0.

Ans. p 4
'—5/= +4.849 mm.

20. Using Seidel's formulae as given in § 193, show that

the condition that an infinitely thin lens surrounded by air,

and provided with a rear stop, shall yield a punctual or

stigmatic image of a plane object placed in the primary focal

plane of the lens, is as follows:

\n-l I n(n-l) 2 {n-iy n{n-l)

where F denotes the refracting power of the lens, F2 denotes

the refracting power of the second surface, 1/S denotes the

distance of the stop, and n denotes the index of refraction

of the lens. If the stop is a rear stop at a distance of 30 mm.
from the lens, and if n = 1.52, show that the maximum value

of the refracting power of a convex lens which will give a

punctual image of a plane object placed in the primary focal

plane is F = + 14.87 dptr.

21. Using Seidel's formulae as given in § 193, show

that the condition that an infinitely thin lens surrounded by
air, and provided with a rear stop, shall give a punctual or

stigmatic image of an infinitely distant object, is:

fcV+c
) n n— 1 n

where n denotes the index of refraction of the lens, F denotes

its refracting power, Ri denotes the curvature of the first

surface of the lens, and C = S—F, the magnitude S being

equal to the reciprocal of the stop-distance.





INDEX

The numbers refer to the pages

Abbe, E.: Porro prism system, 50; refractometer, 128; definition of

focal length, 344; pupils, 401; magnifying power, 454; v-value of

optical medium, 480; optical glass, 482, 489; sine-condition, 523,

542, 547; differential notation, 531.

Aberration, Chromatic: see Chromatic Aberration, Achromatism, etc.

Aberration, Least circle of, 515.

Aberration, Spherical: see Spherical Aberration.

Aberrations, Chromatic and monochromatic, 509; Seidel's five sums,

545-550, 557.

Abney's formula for diameter of aperture of pinhole camera, 5, 26.

Abscissa formula for plane refracting surface, 97, 191, 269; spherical

mirror, 154, 155, 191, 276, 285; spherical refracting surface, 191,

193, 200, 274, 285; infinitely thin lens, 228, 229, 279, 285; centered

system, 332, 519. See also Image Equations.

Absorption of light, 2.

Accommodation of eye, 433-439; amplitude, 437-439; range, 438;

diminishes with age, 435, 436; effected by changes in crystalline

lens, 434; refracting power of eye in accommodation, 436, 437.

Achromatic combinations: Prisms, 480, 481, 491-493; lenses, 480, 481,

499-505.

Achromatic system, 488.

Achromatic telescope, 480, 481, 505.

Achromatism, 480, 481, 487 and foil.; optical and actinic or photo-

graphic, 489-491.

Airy, Sir G. B.: Cylindrical lens, 315; tangent-condition of orthoscopy,

545; curvature of image, 540.

Ametropia, 439 and foil.; axial, curvature and indicial ametropia, 442.

Ametropic eye, 440 and foil.; distance of correction-glass, 445, 446.

Amici, G. B.: Direct vision prism system, 495, 497, 506.

Amplitude of accommodation, 437-439.

Anastigmatic (or stigmatic) lenses, 314.

Angle, Central, 152, 516.
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* Index

Angle, Critical: see Critical Angle, Total Reflection.

Angle, Slope, 151, 334, 516.

Angle, Visual: see Visual Angle, Apparent Size.

Angle of deviation, in case of inclined mirrors, 43; in case of refraction,

78; in prism, 50, 51, 125; in lens, 293. See also Prism, Thin prism,

Prism-dioptry, Prismatic power of lens.

Angles of incidence, reflection and refraction, 30, 31, 65.

Angles, Measurement of, by mirror and scale, 56.

Angstrom unit of wave-length, 10; see also 'i enth-meter.

Angular magnification (or convergence-ratio), 351.

Anterior chamber of eye, 425.

Anterior and posterior poles of eye, 431, 432.

Aperture-angle, 404.

Aphakia, 213, 442.

Aplanatic points of optical system, 524; of spherical refracting surface

(J, J'), 512, 513, 554.

Aplanatism, 524. See Sine-Condition.

Apochromatism, 489.

Apparent place and direction of point-source, 15-18.

Apparent place of object viewed through plate of glass, 102, 103, 105,

106.

Apparent size, 20-22, 446 and foil.; in optical instrument, 449 and foil.

Aqueous humor, 213, 371, 425.

Astigmatic bundle of rays, 25, 310-314, 526-538, 552 and foil.; image-

lines, 100, 312, 313, 534-536, 547; image-points, 312, 526, 527,

529-534; principal sections, 311, 528. See also Meridian rays,

Sagittal rays, Image-points, Image-lines, Sturm's conoid, Astig-

matism.

Astigmatic difference, 533.

Astigmatic image-surfaces, 536-538, 547.

Astigmatic lenses, Chap. IX, 300 and foil.; 314.

Astigmatism by incidence, 527.

Astigmatism, Measure of, 533.

Astigmatism of oblique bundles of rays, 527, 547.

Astigmatism, Sturm's theory, 313, 534.

Astronomical telescope, 411, 456; field of view, 411, 412; magnifying

power, 454-460.

Axial ametropia, 442; static refraction and length of eye-ball, 442, 443.

Axial (or depth) magnification 351.

Axis of collineation, 243.

Axis of lens, 217; spherical refracting surface, 149. See also Optical

axis.

Axis, Visual, 433.
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B

Back focus of lens, 365.

Badal's optometer, 422, 423.

Barlow's achromatic object-glass, 504, 505.

Barrel-shaped distortion, 544.

Bending of lens, 284.

Blind spot of eye, 430, 431.

Blur-circles, 414-417, 419.

Brewster, Sir D.: Kaleidoscope, 47.

Bundle of rays, Character of, 24, 25, 508, 509, 525; "direct," 514;

homocentric (or monocentric), 25, limitation by means of stops,

397-399. See also Astigmatic bundle of rays.

Bunsen burner, 66, 473.

Burnett, S. M.: Prism-dioptry, 135.

Calculation of path of ray: refracted at spherical surface, 516-519;

reflected at spherical mirror, 518; refracted through prism, 124,

125; refracted through centered system, 332, 519-522; numerical

example in case of paraxial and edge rays, 520-522.

Camera: see Pinhole camera.

Cardinal points of optical system, 334-339.

Cataract: see 'Aphakia.

Caustic curve, 514.

Caustic surface, in general, 526; by refraction at plane surface, 98, 99;

by refraction at spherical surface, 515.

Center: Of collineation, 243; of curvature, 260, 526; of perspective (K),

532, 554; of rotation of eye, 432, 434, 448, 452.

Centered system of spherical refracting surfaces: Optical axis, 329;

construction of paraxial ray, 330, 331; calculation of path of parax-

ial ray, 332; conjugate axial points (M, M'), 346, 347; extra-axial

conjugate points (Q, Q'), 339-342; lateral magnification, 333, 349;

Smith-Helmholtz formula, 334; focal planes, 333-335; focal

points, 332-335; ray of finite slope, 519-522.

Centers of perspective of object-space and image-space, 416, 417.

Centrad, 134, 294.

Central angle (<p), 152, 516.

Central collineation, 242-247. •

Central ray, 243.

Chief rays, 24, 413, 420, 526.

Choroid, 425.

i
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Chromatic aberration, 487-489, 509.

Ciliary body, 427; mechanism of accommodation, 434.

Circle of aberration, Least, 515.

Circle of curvature, 260.

Circle of least confusion, 314, 537.

Circles of diffusion: see Blur-circles.

Clausius, R.: Sine-condition, 523.

Coddington, H. : Curvature of image, 540.

Collineation : Central, 242-247; center of, 243; axis of, 243; invariant

of, 246.

Collinear correspondence, 242, 508. See also Punctual imagery.

Color and frequency of vibration, 472-476; and wave-length, 475.

Color of a body, 2.

Colors of spectrum, 466.

Coma, 542, 547.

Combination of three optical systems, 374-376.

Combination of two lenses, 366-370; achromatic, 499 and foil.

Combination of two optical systems, 356-362; focal lengths, 359; focal

and principal points, 358, 361; refracting power, 361.

Complete quadrilateral, 162.

Compound optical systems: Chap. XI, 356, foil.

Concave: Lens, 221; surface, 150.

Concentric lens, 221, 232, 387, 388.

Cones and rods of retina, 428, 429.

Conjugate planes, 172, 194, 236.

Conjugate points on axis (M, M'): Centered system of spherical re-

fracting surfaces, 346, 347; infinitely thin lens, 227-229, 232;

plane refracting surface, 97; plate with parallel faces, 105; spherical

mirror, 154, 164; spherical refracting surface, 181, 183.

Conjugate points off axis (Q, Q') : Centered system of spherical refract-

ing surfaces, 339-342; infinitely thin lens, 234-236; spherical

mirror, 171-175; spherical refracting surface, 193-196.

Conoid, Sturm's, 313, 314, 535.

Convergence-ratio: see Angular Magnification.

Convergent and divergent optical systems, 186, 339, 340.

Convergent lens, 221.

Convex: Lens, 221; surface, 150.

Cornea of human eye, 425; optical constants, 371, 372, 401; vertex,

431.

Correction-glass: Refracting power and vertex-refraction, 443-446;

distance from eye measured by keratometer, 421, 422; second

focal point of glass at far point of eye, 445.

Crew, H.: ''dioptric," 287.
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Critical angle of refraction, 80.

Cross-cylindrical lens, 315, 317, 319, 320, 325.

CrystaUine lens of human eye, 213, 371, 372, 373, 378, 381, 395, 428;

optical constants, 371-373, 395, 434; changes in accommodation,

395, 434; "total index," 436. See also Aphakia.

Culmann, P.: Smith-Helmholtz formula, 202.

Curvature of arc: total, 258; mean, 259; center of, 260; circle of, 260;

radius of, 260; sign of, 260; measure, 260-264.

Curvature of image, 538-540, 547, 548.

Curvature of normal sections of surface, 300-303; principal sections,

302, 303, 525.

Curvature, Unit of, dioptry, 286-288.

Curvature ametropia, 442.

Curvature-method in geometrical optics, 282.

Cushion-shaped distortion, 544.

Cylindrical lenses, 217, 310, 314-317; types, 315-317; combinations,

318-326; transposition, 318-320.

Cylindrical surface, 265, 305-308, 310-313; refracting power, 307, 308,

Dennett: Centrad, 134.

Depth-magnification, 351.

Descartes, R: Law of refraction, 67.

Deviation of ray : See Angle of deviation, Minimum deviation.

Deviation without dispersion, 481, 491-493.

Diamond, 70, 479.

Diaphragms or stops for cutting out rays, 397-399.

Diffraction-effects, 14.

Dioptry, 286-288; "dioptrie," "dioptre," "diopter," etc., 286," 287;

millidoptry, Hectodioptry, and Kilodioptry, 287.

" Direct' ' bundle of rays, 514.

"Direct vision," 448.

Direct vision prism-systems, 493-499.

Direction of ray or straight line: See Positive direction.

Direction of source from observer's eye, 15-18.

Dispersion, Chromatic: Chap. XIV, 465 and foil.; anomalous, 477;

irrationality of, 477-479; partial, 479, 483; relative, 479, 483.

Dispersion without deviation, 481, 493-499.

Dispersive power (or strength), 479-481; dispersive strength of lens,

503.

Distinct vision, Distance of, 452, 453.

Distortion, 543-545.
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Divergent lens, 221; divergent and convergent optical systems, 339,

340.

Dollond, J.: Achromatic object-glass, 481, 482, 504, 505.

Donders's "reduced eye," 214; astigmatism of eye corrected by cylin-

drical glasses, 316; loss of accommodation with increasing age,

435, 436.

Double concave lens, 219.

Double convex lens, 217.

Double ratio (or cross ratio), 156-164.

Drysdale, C. V., 287.

Dutch telescope, 456; field of view, 412, 413; "eye-ring," 413, 458;

magnifying power, 455-460.

Dynamic refraction of eye, 438.

E

Effective rays, 23.

Emergent rays, 24.

Emmetropia and ametropia, 439-443.

Emmetropic eye, 440.

Entrance-port, 406-409, 410, 413.

Entrance-pupil, 43, 179, 400 and foil., 543; two or more entrance-pupils,

405, 406; entrance-pupil of eye, 401, 448.

Ether, Light transmitted through, 10, 472-476.

Euler, L.: Theory of curved surfaces, 303, 306, 525; achromatism,481.

Exit-port, 409, 410, 413.

Exit-pupil, 400-405, 411-413, 415, 417, 419, 420, 448, 543.

Eye: Accommodation, 433-439; anterior chamber, 425; aqueous hu-

mor, 371, 425; bacillary layer of rods and cones, 428; "black of the

eye," 401; blind spot, 430; center of rotation, 432, 434, 448, 452;

change of refracting power in accommodation, 436, 437; choroid,

425; ciliary body, 427; cornea, 371, 372,401,425; cornea-vertex, 431;

crystalline lens, 371-373, 428; decrease of power of accommodation
with age, 435, 436 ; description ofhuman eye, 425-43 1 ; entrance-pupil,

401, 448; expressions for refraction of eye, 439; far point and near

point, 434, 435; field of fixation, 432, 435; focal lengths, 343, 374,

389, 432; focal lengths in case of maximum accommodation, 437;

focal points, 374, 389, 423, 432; fovea centralis, 429, 432, 433, 446;

iris, 401, 425; line of fixation, 432; motor muscles, 431, 432; nodal

points, 422, 432; optical axis, 431; optic nerve, 430; point of fixa-

tion, 432; positions of cardinal points in state of maximum accom-

modation, 437; posterior pole, 432, 438; principal points, 374, 432;

pupil, 23, 401, 409-413, 421, 425; refracting power, 374, 432;
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retina, 428; static and dynamic refraction, 438 and foil.; suspen-

sory ligament (zonule of Zinn), 428, 434; variation of principal

points in accommodation, 437; visual axis, 433; visual purple, 430;

white of the eye, 425, yellow spot {macula lutea), 428.

Eye: see also Schematic eye, Ametropic eye, Emmetropic eye, Hyper-

metropic eye, Myopic eye, "Reduced eye."

Eye-axis, Length of, 438, 440-443, 448.

Eye-ring of telescope, 413, 458, 459.

Eye-glasses: See Correction-glass, Astigmatic lenses, Cylindrical lenses,

Ophthalmic prisms, etc.

Faraday, M.: Optical glass, 482.

Far point, 434, 438, 440, 442; far point sphere, 434; senile recession,

436; coincides with second focal point of correction-glass, 445;

in case of schematic eye, 461.

Far point distance, 437, 444.

Far-sighted eye, 435. See Hypermetropia.

Fermat, P.: Principle of least time, 86.

Field of fixation of eye, 432, 435.

Field of view, 18, 19, 406-409, 448; of plane mirror, 40-43; of spherical

mirror, 176-179; of infinitely thin lens, 247-249, 409-411; of

Dutch telescope, 412, 413; of astronomical telescope, 411, 412;

"ragged edge," 412.

Field-stop, 19, 178, 249, 406, 410.

" Fish-eye camera," 81.

Fixation: field of, 432, 435; line of, 432; point of, 432.

Flat image, 539, 540, 548.

Fluorite, 479, 485.

Focal lengths of schematic eye, 343, 374, 389, 432 ; in case of maximum
accommodation, 437.

Focal lengths of spherical mirror, 167; of spherical refracting surface,

191, 192, 193, 199, 281; of infinitely thin lens, 229, 240-242; of

compound system, 359; of combination of two lenses, 367; of thick

lens, 363; of optical system in general, 342-344.

Focal planes of spherical refracting surface, 197-199; of infinitely thin

lens, 232; of optical system, 334, 335, 341; of centered system of

spherical refracting surfaces, 333.

Focal point angle, 447; as measure of size of retinal image, 449.

Focal points of spherical mirror, 166, 189; of spherical refracting sur-

face, 186-189; of infinitely thin lens, 229-232; of centered system

of spherical refracting surfaces, 332, 333; of optical system, 334,
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335; of compound system, 358, 361; of thick lens, 363; of com-

bination of two lenses, 367.

Focal points of schematic eye, 374, 389, 423, 432.

Focus plane, 400, 402-404, 406-408, 414-417, 543.

Fovea centralis, 429, 432, 433, 446.

Fraunhofer, J.: 145, 479, 493, 494, 506; dark lines of solar spectrum,

470, 472, 475, 476, 477; measurement of index of refraction, 129;

notation of dark lines, 472
;
production of optical glass, 482 ; achro-

matic object-glass, 504, 505.

Frequency of vibration and color, 472-476; connection with wave-

length, 475.

Fresnel, A. J.: Principle of interference, 14; use of cylindrical lens, 315.

Galileo: Telescope and astronomical discoveries, 456, 462, 463, 464.

Gauss, K. F.: Reduced distance, 279, 280; theory of optical imagery,

334, 536, 545, 546; principal points, 335; achromatic object-glass,

504, 505.

Glass, Optical: see Optical Glass.

Gleichen, A.: Lehrbuch der geometrischen Optik, 352.

Goerz, P.: "Double anastigmat" photographic lens, 352.

Graphical methods: Paraxial ray diagrams, 168-171; path of paraxial

ray through centered system, 331; Young's construction, 509-511.

Gregory, J., achromatism, 480.

Grimsehl, E., Lehrbuch der Physik, 363.

Gullstrand, A.: Reduced distance, 280; schematic eye, 343, 370, 371,

374, 381, 382, 389, 395, 432, 436, 442, 443, 461; formulae for com-

pound systems, 260, 361; schematic eye in state of maximum
accommodation, 395, 436, 461; writings, 536.

H

Hadley's sextant, 58-60.

Hall, C. M.: Achromatic telescope, 481.

Harcourt, W. V.: Optical glass, 482.

Harmonic range of points, 161-164.

Heliostat, 54, 55.

Helmholtz, H. Von: Ophthalmometer, 103; Smith-Helmholtz

equation, 201, 202, 214, 215, 334, 338, 342, 459, 524; Handbuch der

physiologischen Optik, 371.

Hero of Alexandria, 87.

Herschel, Sir J. F. W.: Achromatic object-glass of telescope, 504, 505.
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Homocentric bundle of rays, 25.

Houstoun, R. A.: Newton and colors of spectrum, 466, 469.

Huygens, C: Construction of wave-front in general, 10-13, 123; in

case of reflection at plane mirror, 33-37, 61; in case of refraction

at plane surface, 70-72; Huygens 's ocular, 396, 501, 502.

Hypermetropia, 441, 443, 445.

Hypermetropic eye, 441; correction glass, 445.

Image, 5, 17, 18, 25; ideal, 25, 506, 548; real and virtual, 17, 18.

Image, Rectification of, by successive reflections, 50, 51.

Image, Size of retinal, 448, 449.

Images in inclined mirrors, 43-51.

Image-equations of optical system: Referred to focal points, 345;

referred to principal points, 345-347; referred to pair of conjugate

points in general, 347, 348; referred to nodal points, 348; in terms

of refracting power and reduced "vergences," 348.

Image-equations of spherical refracting surface, 200, 201.

Image-lines of narrow astigmatic bundle of rays, 100, 312, 313, 534-

536, 547.

Image-lines of narrow astigmatic bundle of rays refracted at plane

surface, 100.

Image-point, 25.

Image-points of narrow astigmatic bundle of rays, 312, 526, 527, 529-

534.

Image-rays, 24.

Image-space and object-space, 242, 243.

Image-surfaces, Astigmatic, 536-538, 547.

Incidence: Angle of, 30; height, 151; normal, 30; plane of, 30.

Incident rays, 24, 30.

Inclined mirrors, 43-51.

Index of refraction: Absolute, 74; limiting value of, 70; relative, 66;

measurement of, 106, 107, 128, 129; function of wave-length,

476, 477.

Indicial ametropia, 442.

"Indirect vision," 446.

Infinitely distant plane of space, 197, 434.

Infinitely distant point of straight line, 158.

Infinitely thin lens, Paraxial Rays: 217-257, 276-279, 285; abscissa-

formula, 226-229, 285; character of imagery, 237-240; conjugate

axial points, 227-229, 232-234; construction of image, 236; extra-

axial conjugate points, 234-236; field of view, 247-249, 409-411;
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focal lengths, 229, 240-242; focal planes, 232; focal points, 229-

232; lateral magnification, 236, 237; principal planes, 239; pris-

matic power, 291-295; refracting power, 283, 284.

Infinitely thin lens, Central Collineation, 246.

Infinitely thin lens, Conventional representation, 226.

Infinitely thin lens, Refraction of spherical wave through, 276-279.

Infinitely thin lens-system, 289-291; formulae for spherical aberrations,

548-550. See also Achromatic combinations.

Invariant: Of refraction, 76; of central collineation, 246; in case of

refraction of paraxial rays at spherical surface, 191.

Iris of eye, 401, 425.

Isotropic medium, 3, 4.

Jack son, Professor: New optical glass, 484.

Jansen, Z.: Reputed inventor of telescope, 456.

Jena glass, 482-485, 540.

K

Kaleidoscope, 47.

Kepler, J.: Astronomical telescope, 455, 456, sagitta, 202.

Keratometer, 421, 422.

Kessler, F. : Direct vision prism, 497, 498, 499, 506.

Klingenstierna, S.: Achromatic combination of prisms, 481.

Kohlrausch, F. : Measurement of index of refraction, 128.

Lagrange, J. 1^.: Smith-Helmholtz formula, 202.

Landolt, E.: Physiological Optics, 287.

Lange, M.: Calculation-system, 520.

Lateral magnification: Centered system, 333, 349; infinitely thin lens,

236, 237; spherical mirror, 176; spherical refracting surface, 196.

Law: Of independence of rays of light, 15; of rectilinear propagation,

3, 4; of reflection, 31; of refraction, 66; of Malus, 89-91, 525.

Least circle of aberration, 515.

Least confusion, Circle of, 314.

Least deviation: see Prism.

Least time, Principle of, 86-89.
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Lens: see Astigmatic lens, Cylindrical lens, Infinitely thin lens, Thick

lens, Toric lens, etc.

Lens: Axis, 217; bending of, 284; concentric, 221, 232, 387, 388; concave

and convex, 222; convergent or positive and divergent or negative,

223; definition, 217; dispersive strength, 503; double convex and

double concave, 217, 219; meniscus, 219, 226, 385, 386, 387; of

zero curvature, 221, 386; optical center, 223-226; plano-convex

and plano-concave, 219; refracting power, 283, 363; symmetric,

217, 385, 388; thickness, 219.

Lens, Crystalline: see Crystalline lens.

Lens-gauge, 263-265, 288, 289.

Lenses, Forms of, 217-223.

Lens-system: see Combination of two lenses.

Lens-system, Thin: 289-291; achromatic combination, 502-505.

Light: Rectilinear propagation, see Chap. I; wave-theory, 9, 10, 472

and foil.; velocity, 10, 72, 75, 474, 475.

Line of fixation, 432.

Lippershey, F.: Reputed inventor of telescope, 456.

Listing, J. B.: " Reduced eye," 214; nodal points, 337.

Luminous bodies, 1.

Luminous point, Direction and location, 15-18.

M
Macula lutea or yellow spot, 428.

Magnification: see Angular magnification, Axial magnification, Lateral

magnification, Magnification-ratios, Magnifying power.

Magnification-ratios, 349-351.

Magnifying power, 199, 344, 452 and foil.; Abbe's definition, 454;

absolute, 454; individual, 454.

Magnifying power of magnifying glass, 453; of microscope, 454; of

telescope, 455-460.

Malus, E. L.: Law, 89-91, 525.

Medium: see Optical medium.

Meniscus lens, 219, 226, 385, 386, 387.

Meridian rays, 311. See Meridian section of narrow bundle of rays.

Meridian section of narrow bundle of rays, 311, 528, 530-533, 535, 552,

553, 554, 556; lack of symmetry in, 541.

Meridian section of surface of revolution, 305.

Michelson, A. A.: Velocity of light, 474.

Minimum deviation of prism: see Prism.

Mirror: see Plane mirror, Spherical mirror, "Thick mirror,"
(l Thin

mirror," Inclined mirrors, etc.
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Mirror and scale for angular measurement, 56-58.

Moebius, A. F.: Principal points, 335.

Monocentric bundle of rays, 25.

Monochromatic aberrations, 509. See Spherical aberration.

Monochromatic light, 66, 467, 473-477.

Monoyer, F.: "dioptrie," 286.

Moser, C: Nodal points, 337.

Muscles, Motor, of eye, 431, 432.

Myopia, 441, 443, 445.

Myopic eye, 441; correction-glass, 445.

N

Near point, 434, 435, 438; near point sphere, 434, 435; near point re-

cedes from eye with increase of age, 435, 436; in case of schematic

eye, 436, 461.

Near point distance, 437.

Near-sighted eye, 435. See Myopic eye.

Negative lens, 223.

Negative principal points, 338.

Neutralization of lenses, 291.

Newton, Sir I.: 11; prism experiments and dispersion, 66, 465, 466,

467, 469, 470, 480, 481.

Newtonian formula (x.x
f

=ff), 168, 201, 237, 345, 554.

Nodal planes, 337.

Nodal points, 337, 338; construction, 340; relation between nodal

points and principal points, 341, 343; image-equations referred to

348; of lens, 226, 363.

Nodal points of eye, 422, 432.

Normal sections of curved surface, 300-305, 525, 526; cylindrical

surface, 306.

Object-point, 25.

Object-rays, 24.

Object-space and image-space, 242, 243.

Obliquely crossed cylinders, 320-326.

Oculars of Huygens and Ramsden, 502.

Opaque bodies, 2.

Ophthalmic lenses: See Astigmatic lenses, Cylindrical lenses, Correction'

glass, Toric lenses, etc.
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Ophthalmic prism: Base-apex line, 135; combination of two ophthal-

mic prisms, 138-142; deviation, 133; power, 134; rotary prism, 141.

Ophthalmometer, 103.

Optic nerve, 430.

Optical achromatism, 489, 490.

Optical axis, axis of symmetry, 23; of centered system, 329; of lens, 217.

Optical axis of eye, 431.

Optical center of lens, 223-226.

Optical disk for verifying law of reflection, 32; refraction, 67, 68; total

reflection, 83, 84.

Optical glass, 481 and foil.; process of manufacture, 485-487.

Optical image, 5, 17, 18, 25. See also linage.

Optical instrument, 23.

Optical invariant of refraction, 76.

Optical length, 89-91, 278, 279.

Optical medium, 3; media of different refractivities, 70.

Optical system, 23.

Optometer of Badal, 422, 423.

Origin of coordinates, 149. See also Image-equations.

Orthoscopy, Conditions of, 543-545.

Paraxial ray, Definition, 152.

Paraxial rays, Diagrams showing imagery by means of, 168-171.

Paraxial rays: Centered system, 329-334, 519-521; infinitely thin lens,

217-257, 276-279, 285; plane refracting surface, 96-98, 191, 265-

269; plate with parallel faces, 105-107; spherical mirror, 153-179,

189, 274-276, 285; spherical refracting surface, 179-202, 269-274,

285, 519, 534; thin lens-system, 289-291.

Paraxial ray, Calculation of, 519-521.

Pencil of rays, 24.

Pendlebury, C. : Lenses and systems of lenses, 280.

Penumbra, 7.

Period of vibration, 473.

Perspective in art, 22.

Perspective, Center of, 159; so-called center (K), 532; pupil-centers as

centers of perspective, 416, 417.

Perspective elongation of image, 419, 420.

Perspective ranges of points, 159-161.

Perspective reproduction in screen-plane, 417.

Petzval, J.: Curvature of image, 539.

Photograph, Correct distance of viewing, 417-419.
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Pinhole camera, 5. See also "Fish-eye" camera.

Plane image, Conditions of, 538-540, 548.

Plane mirror: Conjugate points, 38; reflection of plane and spherical

waves at, 33-37; image of extended object in, 37-40; uses of, 52;

rotation of, 32, 56; field of view, 40-43; punctual imagery, 508;

reflecting power, 380, 381. See also Inclined Mirrors, Mirror and

scale, "Thick mirror," Sextant, Heliostat, etc.

Plane Mirrors, Inclined, 43-51; rectangular combinations for rectifying

image, 50, 51.

Plane refracting surface: Caustic surface, 98, 99; narrow astigmatic

bundle of rays, 98-100, 553; paraxial rays, 96-98, 191, 265-269;

plane wave, 70-72; principle of least time, 87-89.

Plane wave, 13; reflection at plane mirror, 33-35; refraction at plane

surface, 70-72; refraction through prism, 123, 124; mechanical

illustration, 72, 73.

Plano-convex and plano-concave lenses, 219, 225.

Piano-cylindrical lenses, 315-317.

Plate (or slab) with plane parallel faces: Path of ray through, 101-103;

refraction of paraxial rays, 105-107; apparent position of object

viewed through plate at right angles to line of sight, 102, 103, and

inclined to line of sight, 105-107; multiple images by reflection and

refraction, 107-110; parallel plate micrometer, 103.

Point of fixation, 432.

Point-source of light, 1; apparent place and direction, 15-18.

Porro, I.: Prism-system for rectification of image, 50, 51.

Porta 's pinhole camera, 5.

Porte lumiere, 53.

Ports: See Entrance-port, Exit-port.

Positive and negative directions along a straight line, 104; positive

direction along the axis, 149, 219.

Positive lens, 223.

Posterior pole of eye, 432, 438.

Power of lens or prism: See Prism, Prismatic power of lens, Reflecting

power, Refracting power.

Power of accommodation: See Accommodation.

Prentice, C. F.: Crossed cylinders, 321; diagrams, 308, 309, 310; power

of ophthalmic prism, 135.

Presbyopia, 435.

Principal planes, 335; of a thin lens, 239; of a spherical refracting sur-

face, 196, 335.

Principal point angle, 447; as measure of size of retinal image,

448.

Principal points, 334, 335; relation to nodal points, 341, 343; image
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equations referred to, 345-347; of combination of two lenses, 367,

369, 370; of compound system, 361; of compound system of three

members, 375; of infinitely thin lens, 239; of "thick mirror," 377-

379, 383; of thick lens, 363.

Principal points of eye, 374, 432; of eye in state of maximum accom-

modation, 437; as points of reference, 437.

Principal section of prism, 113.

Principal sections: Of curved surfaces, 302, 525; of surface of revolution,

305; of cylindrical surface, 306; of toric surface, 309; of toric lenses,

310; of a bundle of rays, 304, 311-314, 528, 535.

Prism, 85, 86, 113 and foil.; base-apex line, 134; edge, 113; refracting

angle, 113, and its measurement, 55; principal section, 113. See

also Thin prism, Ophthalmic prism.

Prism, Dispersion by, 465 and foil.

Prism, Path of ray through a: Calculation, 124, 125, and construction

of, 113-116; deviation, 116; deviation away from edge, 122; "graz-

ing" incidence and emergence, 117, 118; limiting incident ray, 118;

minimum deviation, 119-122, 128-133, normal emergence, 129;

symmetrical ray, 119-122, 129-133.

Prism, Refraction of plane wave through, 123, 124.

Prism-dioptry, 135, 294.

Prism-system: Achromatic combination of two thin prisms, 491-493;

direct vision prism combinations, 493 and foil.; direct vision

prism of Amici, 495-497, and of Kessler, 497-499.

Prismatic power of infinitely thin lens, 291-295.

Problems, 25-27, 60-63, 92-94, 110-112, 142-148, 203-216, 249-257,

295-299, 326-328, 351-355, 384-396, 423-424, 461-464, 505-507,

551-557.

Projected image and object, 415, 416.

Pulfrich, C: Refractometer, 128.

Punctual imagery, 313, 314, 397, 508, 509; in plane mirror, 508.

Punctum ccecum (blind spot), 430.

Punctum proximum (near point), 434, 435.

Punctum remotum (far point), 434.

Pupil of eye, 23, 401, 409-413, 421, 425.

Pupils of optical system: See Entrance-pupil, Exit-pupil.

Purity of spectrum, 469-471.

Purkinje images by reflection in the eye, 378; calculation of equiv-

alent optical system, 381, 382.

Q

Quartz, 485.
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Radius: Of curvature, 260; of spherical reflecting or refracting surface,

150.

Ramsden circle, 458.

Ramsden ocular, 463, 502.

Range of accommodation, 438.

Rays, Chief: see Chief rays.

Rays of finite slope, Chap. XV, 508, foil.

Rays of light, 9; mutual independence, 15; meet wave-surface nor-

mally, 13, 14, 89-91. See also Bundle of rays, Effective rays, Emer-

gent rays, Image rays, Incident rays, Obiect-rays, Pencil of rays, etc.

Ray-coordinates (or ray-parameters), 95, 517.

"Real and "virtual," 17; images, 17, 18.

Rectangular combinations of plane mirrors, 50, 51.

Rectilinear propagation of light, 3-5.

Reduced abscissa, and "vergence," 284-286, 348.

Reduced distance, 279-281; reduced distance (c) between two optical

systems, 360.

"Reduced eye," 214, 437.

Reduced focal lengths, 281; focal point "vergences," 284-286.

Reflecting power of mirror, 283; plane mirror, 380, 381; "thick mirror "

379.

Reflecting surface, Quality of, 29, 30.

Reflection, Angle of, 31, and laws of, 31.

Reflection, Regular and irregular (diffuse), 28-30.

Reflection as special case of refraction, 182, 183, 189.

Reflection and refraction, Generalization of laws of, 86-89.

Refracted ray, Construction of, 76-78; deviation, 78. See also Plane

refracting surface, Spherical refracting surface, etc.

Refracting angle of prism, 113; measurement of, 55.

Refracting power, 281-284; in normal section of refracting surface, 303;

of spherical refracting surface, 282, 300; of compound system of

two members, 361, and of three members, 375; of thick lens, 363; of

thin lens, 283, 284; of thin lens-system, 290; of combination of two

lenses, 367.

Refracting power of correction-glass, 444.

Refracting power of schematic eye, 374, 432; in state of maximum
accommodation, 437, 438, 439.

Refraction of eye, 438, 439; dynamic, 438, and static refraction, 438.

Refraction of light, 64, 65; angle of, 65; laws of, 66, and experimental

basis, 67-69; mechanical illustration of, 72, 73. See also Index of

Refraction, Total Reflection, etc.
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Resolving power of eye, 21, 22.

Resultant prism equivalent to two thin prisms, 138-142.

Retina, 428.

Retinal image, Size of, 448, 449.

Reversibility of light-path, 69.

Rotary prism, 141.

S

Sagitta of arc, 262.

Sagittal rays, 311. See Sagittal section of narrow bundle of rays.

Sagittal section of narrow bundle of rays, 311-314, 528-530; symmetry

in, 541.

Scheiner, C: Astronomical and terrestrial telescopes, 456.

Schematic eye: Far point, 461; focal lengths, 343, 374, 389, 432; focal

points, 374, 389, 423, 432; length of eye-axis, 432, 442, 443; near

point, 436, 461; optical constants, 370-374, 389, 432, 436, 437, 443,

461; in state of maximum accommodation, 395, 436, 437, 461.

Schott, O.: Optical glass, 482, 489.

Sclerotic coat or sclera, 425.

Screen-plane, 400, 402, 414-417, 419, 543.

Searle, G. F. C: "Thick mirror," 376, 377.

Secondary spectrum, 488.

Segments of straight line, 104, 105.

Seidel, L. Von : Theory of the five spherical aberrations, 545, 546, 547,

548, 550, 557; curvature of image, 540; sine-condition, 523.

Self-conjugate point, 243.

Self-conjugate ray, 243.

Sextant, 58-60.

Shadows, 6-9.

Sine-condition, 522-525, 547.

Slab with plane parallel faces: See Plate.

Slope of ray, 151, 334, 516.

Smith, R.: Smith-Helmholtz formula, 201, 202, 214, 215, 334, 383,

312, 459, 524.

Snell (or Snellius), W.: Law of refraction, 67, 72.

Spectrum, 466 and foil.; purity of, 469-471.

Spectrum, Solar, 466 and foil.; Newton's experiments, 465 and foil.

Wollaston's experiments, 469, 470; Fraunhofer's experiments,

472; dark lines, 472.

Spherical aberration, Chap. XV, 509, 513 and foil.; along the axis,

513-516, 518, 522, 547.

"Spherical lens," 217.
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Spherical Mirror, Ray reflected at, 518, 519.

Spherical mirror, Paraxial Rays: 153-179, 189, 274-276, 285; abscissa

formula, 154, 285; construction of conjugate axial points, 164-166

focal points, 166, 189; focal length, 167; Newtonian formula, 168

extra-axial conjugate points, 171-173; construction of image, 173

imagery, 174, 175; lateral magnification, 176; field of view, 176-

179; reflecting power, 283; spherical wave reflected at spherical

mirror, 274-276. See also "Thick Mirror."

Spherical over- and under-correction, 514, 515.

Spherical refracting (or reflecting) surface: Axis, 149; convex and

concave, 150; convergent and divergent, 186; magnifying power,

199; radius, 150; vertex, 149.

Spherical refracting surface: Aplanatic points, 512, 513, 524; calcula-

tion of refracted ray, 516-519; construction of refracted ray, 509-

512; formulae for refracted ray, 517-519.

Spherical refracting surface, Astigmatism of oblique bundle of rays,

526-534, 553, 554, 556.

Spherical refracting surface, Paraxial rays: 179-202, 269-274, 285, 519,

534; abscissa formula, 191, 193, 285; conjugate axial points,

179-186, 191, 192; conjugate planes, 193, 194; construction of

image, 194-196; construction of refracted ray, 199, 200; extra-

axial conjugate points, 193-196; focal lengths, 191-193, 199;

focal planes, 197-199; focal points, 186-189; image-equations, 200,

201; lateral magnification, 196; refracting power, -179-202; re-

fraction of spherical wave, 269-276.

Spherical wave reflected at plane mirror, 35-37; at spherical mirror,

27^-276.

Spherical wave refracted at plane surface, 265-269; at spherical surface,

269-274; through infinitely thin lens, 276-279.

Spherical zones, 515, 516.

Sphero-cylindrical lens, 217, 315, 317.

Spherometer, 263.

Static refraction of eye, 438, 440, 441, 442, 443; connection with length

of eye-ball in case of axial ametropia, 442, 443; relation with re-

fracting power or vertex refraction of correction-glass, 444-447.

Steinheil, A.: Data of "periscope" photographic lens, 554, 555, 556;

achromatic object-glass, 505.

Steinheil, R.: Calculation of object-glass of telescope, 520.

Stigmatic (or anastigmatic) lenses, 314.

Stokes, Sir G. G.: Optical glass, 482.

Stop, Effect of, 398, 399; front, rear or interior stop, 398. See also

Aperture-stop, Field-stop, etc.

Sturm, J. C. F.: Conoid, 310, 313, 534, 535.
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Surface of revolution, 305; meridian section, 305; principal sections,

305.

Surfaces, Theory of curved, 300-303, 525, 526; normal sections, 300-

303, 525, 526; principal sections, 302, 525.

Suspensory ligament, 428, 434.

Symmetric lens, 217, 385, 388.

Symmetric points, 339.

Tangent-condition of orthoscopy, 545.

Telecentric optical system, 420-423.

Telescope: see Astronomical telescope, Dutch (or Galilean) telescope,

Terrestrial telescope.

Telescope: Eye-ring or Ramsden circle, 413, 458, 459; magnifying

power, 445-460; invention, 456, 457; object-glass and ocular, 455;

simple schematic telescope, 455.

Telescopic imagery, 359

Telescopic system, 359.

Tenth-meter, 10, 475.

Terrestrial telescope, 457.

Thick lens, 362-366; focal points, nodal points, principal points, and

refracting power, 363; vertex refraction, 365, 366.

"Thick mirror," 376-384, 392, 393; principal points, 377-379, 383;

reflecting power, 379.

Thin lens: see Infinitely thin lens, Infinitely thin lens-system.

"Thin mirror," 377.

Thin prism: combination of two thin prisms, 138-142; deviatitn, 133,

134 and power, 134-138. See also Ophthalmic prism.

Thin prisms, Achromatic combination of, 491-493; and direct-vision

combination of, 493-495.

Thompson, S. P., 38, 135; axial (or depth) magnification, 351; obliquely

crossed cylindrical lenses, 321; symmetric points of optical system,

338.

Toepler, A.: Negative principal points optical system, 338.

Toric lens, 310, 314, 316, 317.

Toric surface, 265, 305, 306, 308-310, 320.

Total reflection, 79-86; experimental illustrations, 83-89. See also

Prism.

Total reflection prism, 85, 86, 125, 127.

Translucent body, 3.

Transparent body, 2.

Transposing of cylindrical lenses, 318-320.

Tscherning, M.: Physiological Optics, 287.
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U

Umbra, 7.

Undulatory theory of light: see Wave Theory.

Unit planes and unit points of optical system, 335.

Velocity of light in different media, 72-75, 475; varies with color, 474;

in vacuo, 10, 75, 474, 476.

Verant, 418.

Vertex of spherical surface, 149; of cornea, 431.

Vertex refraction of lens, 365, 366; of correction-glass, 445, 446.

"Vertex-depth" of concave surface of meniscus lens, 298.

Vertices of lens, 219.

Vibration frequency and color, 472 and foil.; and wave-length, 473

and foil.

"Virtual" and "real," 17; images, 17, 18.

Virtual image, 17, 18; in case of plane mirror, 38.

Virtual object in case of plane mirror, 38.

Vision, "Direct," 448; and "indirect," 446.

Vision, Distance of distinct, 452, 453.

Visual angle, 20, 446 and foil.; principal point angle, 447, 448; focal

point angle, 447, 449.

Visual axis, 433.

Visual purple, 430.

Vitreous humor, 213, 371, 428.

Von Rohr, M.: Abbreviation "dptr.," 287; verant, 418; Theorie und

Geschichte d. photograph. Objektivs, 555.

W
Wave-front, Plane, 13, and spherical, 11. See also Plane wave, Spherical

wave, Huygens, Malus.
Wave-length, in vacuo, 5, 475; wave-length and frequency, 475; wave-

length and index of refraction, 476, 477; wave-length and color,

474-477.

Wave-surface, Rays normal to, 13, 14, 89-91, 525.

Wave-theory of light, 9, 10, 472 and foil., 508.

Wollaston, W. H.: Dark lines of solar spectrum, 472; dispersion ex-

periments, 469.

Wood, R. W.: "Fish-eye" camera, 81; velocity of light of different

colors, 474.
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Yellow spot (or macula lutea), 428.

Young, T.: center of perspective (K), 532; construction of ray re-

fracted at spherical surface, 509, 510, 511, 527, 552; principle of

interference, 14.

Z

Zinn's zonule (or suspensory ligament), 428.
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